/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "io.h" #include #include #include "common/enforce.h" #include "common/log.h" #include "framework/framework.pb.h" #include "framework/lod_tensor.h" #include "framework/operator.h" #include "framework/program/program_desc.h" #include "framework/scope.h" #include "framework/tensor.h" namespace paddle_mobile { void ReadBinaryFile(const std::string &filename, std::string *contents) { std::ifstream fin(filename, std::ios::in | std::ios::binary); PADDLE_MOBILE_ENFORCE(fin.is_open(), "open file: %s failed", filename.c_str()); fin.seekg(0, std::ios::end); contents->clear(); contents->resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(contents->at(0)), contents->size()); fin.close(); } template void Loader::LoadVar(framework::LoDTensor *tensor, const std::string &file_path) { std::ifstream is(file_path); PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed", file_path.c_str()); std::fpos pos; pos = is.tellg(); // save current position is.seekg(0, std::ios::end); is.seekg(pos); // restore saved position // 1. version uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); // 2 Lod information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); auto &lod = *tensor->mutable_lod(); lod.resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); for (auto j : tmp) { LOG(kLOG_DEBUG1) << " lod - " << j; } lod[i] = tmp; } // 3. tensor version uint32_t tensor_version; is.read(reinterpret_cast(&tensor_version), sizeof(tensor_version)); // 4. tensor desc int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); framework::proto::VarType::TensorDesc desc; desc.ParseFromArray(buf.get(), size); int memory_size = 1; for (auto l : desc.dims()) { memory_size *= l; } std::vector dims; dims.reserve(static_cast(desc.dims().size())); std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); tensor->Resize(framework::make_ddim(dims)); void *memory = tensor; int type_size = 0; switch (desc.data_type()) { case framework::proto::VarType::FP16: type_size = 2; break; case framework::proto::VarType::FP32: type_size = 4; memory = tensor->mutable_data(); break; case framework::proto::VarType::FP64: type_size = 8; break; case framework::proto::VarType::INT32: type_size = 4; break; case framework::proto::VarType::INT64: type_size = 8; break; case framework::proto::VarType::BOOL: type_size = 1; break; default: break; } is.read(static_cast(memory), memory_size * type_size); is.close(); } template const framework::Program Loader::Load( const std::string &dirname) { std::string model_filename = dirname + "/__model__"; std::string program_desc_str; ReadBinaryFile(model_filename, &program_desc_str); framework::proto::ProgramDesc program_desc_proto; program_desc_proto.ParseFromString(program_desc_str); std::shared_ptr originProgramDesc = std::make_shared(program_desc_proto); framework::Program program; program.model_path = dirname; program.originProgram = originProgramDesc; std::shared_ptr scope = std::make_shared(); program.scope = scope; originProgramDesc->Block(0); for (const auto &block : originProgramDesc->Blocks()) { for (int i = 0; i < block->Vars().size(); ++i) { std::shared_ptr var_desc = block->Vars()[i]; auto var = scope->Var(var_desc->Name()); if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { if (var_desc->Persistable() && var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH && var_desc->GetType() != framework::proto::VarType::FETCH_LIST) { auto tensor = var->GetMutable(); // to load LoadVar(tensor, dirname + "/" + var_desc->Name()); } } else { // TODO(codeWorm): some. } } } #ifdef PADDLE_MOBILE_DEBUG for (const auto &block : program_desc_proto.blocks()) { LOG(kLOG_DEBUG) << "block: " << block.idx(); for (int j = 0; j < block.ops().size(); ++j) { framework::proto::OpDesc op = block.ops()[j]; LOG(kLOG_DEBUG1) << "op: " << op.type(); for (int m = 0; m < op.inputs_size(); ++m) { const framework::proto::OpDesc::Var &var = op.inputs(m); LOG(kLOG_DEBUG2) << "input parameter: " << var.parameter(); for (const auto &n : var.arguments()) { LOG(kLOG_DEBUG3) << "argument - " << n; } } for (int y = 0; y < op.outputs_size(); ++y) { const framework::proto::OpDesc::Var &var = op.outputs(y); LOG(kLOG_DEBUG2) << "out parameter: " << var.parameter(); for (const auto &z : var.arguments()) { LOG(kLOG_DEBUG3) << "argument - " << z; } } for (const auto &attr : op.attrs()) { LOG(kLOG_DEBUG2) << "attr name: " << attr.name(); switch (attr.type()) { case framework::proto::AttrType::BOOLEAN: LOG(kLOG_DEBUG3) << "boolen: " << attr.b(); break; case framework::proto::AttrType::INT: LOG(kLOG_DEBUG3) << "int: " << attr.i(); break; case framework::proto::AttrType::FLOAT: LOG(kLOG_DEBUG3) << "float: " << attr.f(); case framework::proto::AttrType::STRING: LOG(kLOG_DEBUG3) << "string: " << attr.s(); case framework::proto::AttrType::BOOLEANS: for (int y = 0; y < attr.bools_size(); ++y) { LOG(kLOG_DEBUG3) << "bools: " << attr.bools(y); } case framework::proto::AttrType::LONG: LOG(kLOG_DEBUG3) << "long: " << attr.l(); case framework::proto::AttrType::FLOATS: for (int y = 0; y < attr.floats_size(); ++y) { LOG(kLOG_DEBUG3) << "floats: " << attr.floats(y); } case framework::proto::AttrType::INTS: for (int y = 0; y < attr.ints_size(); ++y) { LOG(kLOG_DEBUG3) << "ints: " << attr.ints(y); } case framework::proto::AttrType::STRINGS: for (int y = 0; y < attr.strings_size(); ++y) { LOG(kLOG_DEBUG3) << "strings: " << attr.strings(y); } case framework::proto::BLOCK: break; } } } for (const auto &var : block.vars()) { if (var.type().type() == framework::proto::VarType::LOD_TENSOR) { LOG(kLOG_DEBUG1) << "var name: " << var.name(); const framework::proto::VarType::TensorDesc &tensor_desc = var.type().lod_tensor().tensor(); LOG(kLOG_DEBUG2) << "in var tensor desc dims size: " << tensor_desc.dims().size(); for (int l = 0; l < tensor_desc.dims().size(); ++l) { LOG(kLOG_DEBUG3) << "var tensor desc dim " << l << " value: " << tensor_desc.dims()[l]; } } if (var.persistable() && var.type().type() != framework::proto::VarType::FEED_MINIBATCH && var.type().type() != framework::proto::VarType::FETCH_LIST) { std::string file_path = dirname + "/" + var.name(); std::ifstream is(file_path); PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed", file_path.c_str()); std::fpos pos; pos = is.tellg(); // save current position is.seekg(0, std::ios::end); is.seekg(pos); // restore saved position // 1. version uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); // 2 Lod information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); for (int j = 0; j < tmp.size(); ++j) { } } is.read(reinterpret_cast(&version), sizeof(version)); int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); framework::proto::VarType::TensorDesc desc; desc.ParseFromArray(buf.get(), size); int memory_size = 1; for (long long l : desc.dims()) { memory_size *= l; } int type_size = 0; switch (desc.data_type()) { case framework::proto::VarType::FP16: type_size = 2; break; case framework::proto::VarType::FP32: type_size = 4; break; case framework::proto::VarType::FP64: type_size = 8; break; case framework::proto::VarType::INT32: type_size = 4; break; case framework::proto::VarType::INT64: type_size = 8; break; case framework::proto::VarType::BOOL: type_size = 1; break; default: break; } void *memory = malloc(memory_size * type_size); is.read(static_cast(memory), memory_size * type_size); is.close(); } else { // TODO } } } #endif return program; } template class Loader; #pragma mark - executor template Executor::Executor(const framework::Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); for (int i = 0; i < blocks.size(); ++i) { std::shared_ptr block_desc = blocks[i]; std::vector> ops = block_desc->Ops(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op = ops[j]; // auto op_base = // framework::OpRegistry::CreateOp(op->Type(), // op->GetInputs(), op->GetOutputs(), // op->GetAttrMap(), program_.scope); // op_base->InferShape(); } } InitMemory(); } template void Executor::LoadMemory(framework::LoDTensor *tensor, const std::string &file_path) { std::ifstream is(file_path); PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed", file_path.c_str()); std::fpos pos; pos = is.tellg(); // save current position is.seekg(0, std::ios::end); is.seekg(pos); // restore saved position // 1. version uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); // 2 Lod information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); auto &lod = *tensor->mutable_lod(); lod.resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); for (auto j : tmp) { LOG(kLOG_DEBUG1) << " lod - " << j; } lod[i] = tmp; } // 3. tensor version uint32_t tensor_version; is.read(reinterpret_cast(&tensor_version), sizeof(tensor_version)); // 4. tensor desc int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); framework::proto::VarType::TensorDesc desc; desc.ParseFromArray(buf.get(), size); int memory_size = 1; for (auto l : desc.dims()) { memory_size *= l; } std::vector dims; dims.reserve(static_cast(desc.dims().size())); std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); tensor->Resize(framework::make_ddim(dims)); void *memory = tensor; int type_size = 0; switch (desc.data_type()) { case framework::proto::VarType::FP16: type_size = 2; break; case framework::proto::VarType::FP32: type_size = 4; memory = tensor->mutable_data(); break; case framework::proto::VarType::FP64: type_size = 8; break; case framework::proto::VarType::INT32: type_size = 4; break; case framework::proto::VarType::INT64: type_size = 8; break; case framework::proto::VarType::BOOL: type_size = 1; break; default: break; } is.read(static_cast(memory), memory_size * type_size); is.close(); }; template void Executor::InitMemory() { for (const auto &block : to_predict_program_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { auto tensor = var->template GetMutable(); LoadMemory(tensor, program_.model_path + "/" + var_desc->Name()); } else { if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { auto tensor = var->template GetMutable(); tensor->template mutable_data(); } } } } } template std::shared_ptr Executor::predict( framework::Tensor &t) { // feed auto scope = program_.scope; framework::Variable *g_feed_value = scope->Var("pixel"); auto tensor = g_feed_value->GetMutable(); tensor->ShareDataWith(t); framework::Variable *con_output = scope->Var("conv2d_0.tmp_0"); framework::Tensor *output_tensor = con_output->GetMutable(); output_tensor->mutable_data({1, 16, 32, 32}); // std::cout << typeid(output_tensor).name() << std::endl; // std::cout << "output_tensor dims: " << output_tensor->dims() << // std::endl; std::shared_ptr out_tensor = std::make_shared(); out_tensor.reset(output_tensor); predict(t, 0); return out_tensor; } template void Executor::predict(const framework::Tensor &t, int block_id) { // framework::Variable *g_feed_value = program_.scope->Var("feed"); // auto feed_tensor = g_feed_value->GetMutable(); // feed_tensor->ShareDataWith(t); std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; op->Run(); } } template std::vector::Ptype> Executor::predict( const std::vector &input, const std::vector &dims) { DLOG << "start predict: "; framework::Tensor tensor; auto ddim = framework::make_ddim(dims); auto input_ptr = tensor.mutable_data(ddim); for (int i = 0; i < input.size(); ++i) { input_ptr[i] = input[i]; } predict(tensor, 0); framework::Variable *g_feed_value = program_.scope->Var("col"); auto feed_tensor = g_feed_value->GetMutable(); return {}; } template class Executor; } // namespace paddle_mobile