// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/cast_compute.h" #include #include "lite/backends/arm/math/funcs.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template out_type TransOp(in_type in) { return static_cast(in); } void CastCompute::PrepareForRun() {} void CastCompute::Run() { auto& ctx = this->ctx_->template As(); auto& param = this->Param(); auto input_dims = param.X->dims(); // BOOL = 0;INT16 = 1;INT32 = 2;INT64 = 3;FP16 = 4;FP32 = 5;FP64 = 6; // SIZE_T = 19;UINT8 = 20;INT8 = 21; if (param.in_dtype == param.out_dtype && param.in_dtype == 2) { const auto* x_data = param.X->data(); auto* o_data = param.Out->mutable_data(); memcpy(o_data, x_data, sizeof(float) * param.X->numel()); } else if (param.in_dtype == 21 && param.out_dtype == 5) { // int8->float32 const char* x_data_begin = param.X->data(); const char* x_data_end = x_data_begin + param.X->numel(); float* out_data = param.Out->mutable_data(); std::transform(x_data_begin, x_data_end, out_data, TransOp); } else if (param.in_dtype == 2 && param.out_dtype == 5) { // int32 -> float32 const int32_t* x_data_begin = param.X->data(); const int32_t* x_data_end = x_data_begin + param.X->numel(); float* out_data = param.Out->mutable_data(); std::transform(x_data_begin, x_data_end, out_data, TransOp); } else if (param.in_dtype == 20 && param.out_dtype == 5) { // uint8->float32 const unsigned char* x_data_begin = param.X->data(); const unsigned char* x_data_end = x_data_begin + param.X->numel(); float* out_data = param.Out->mutable_data(); std::transform( x_data_begin, x_data_end, out_data, TransOp); } else if (param.in_dtype == 3 && param.out_dtype == 2) { const int64_t* x_data_begin = param.X->data(); const int64_t* x_data_end = x_data_begin + param.X->numel(); int32_t* out_data = param.Out->mutable_data(); std::transform( x_data_begin, x_data_end, out_data, TransOp); } else if (param.in_dtype == 0 && param.out_dtype == 5) { // bool->fp32 const bool* x_data_begin = param.X->data(); const bool* x_data_end = x_data_begin + param.X->numel(); float* out_data = param.Out->mutable_data(); std::transform(x_data_begin, x_data_end, out_data, TransOp); } else if (param.in_dtype == 3 && param.out_dtype == 5) { // int64->fp32 const int64_t* x_data_begin = param.X->data(); const int64_t* x_data_end = x_data_begin + param.X->numel(); float* out_data = param.Out->mutable_data(); std::transform(x_data_begin, x_data_end, out_data, TransOp); } else { LOG(FATAL) << "other has not been implemented transform with dtype" << param.in_dtype << " X, dtype" << param.out_dtype << " Out"; } } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( cast, kARM, kAny, kNCHW, paddle::lite::kernels::arm::CastCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kAny))}) .Finalize();