// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class GenerateProposalsComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string Scores_ = "Scores"; std::string BboxDeltas_ = "BboxDeltas"; std::string ImInfo_ = "ImInfo"; std::string Anchors_ = "Anchors"; std::string Variances_ = "Variances"; int pre_nms_topN_ = 6000; int post_nms_topN_ = 1000; float nms_thresh_ = 0.699999988079071; float min_size_ = 0.0; float eta_ = 1.0; std::string RpnRois_ = "RpnRois"; std::string RpnRoiProbs_ = "RpnRoiProbs"; public: GenerateProposalsComputeTester(const Place& place, const std::string& alias) : TestCase(place, alias) {} void RunBaseline(Scope* scope) override { auto* rois = scope->NewTensor(RpnRois_); auto* probs = scope->NewTensor(RpnRoiProbs_); CHECK(rois); CHECK(probs); rois->Resize(std::vector({304, 4})); probs->Resize(std::vector({304, 1})); std::vector lod0({0, 152, 304}); LoD lod; lod.push_back(lod0); rois->set_lod(lod); probs->set_lod(lod); auto* rois_data = rois->mutable_data(); auto* probs_data = probs->mutable_data(); std::string base_path = "/data/local/tmp/data_files/"; std::string filename; std::ifstream reader; // rois filename = "result_generate_proposals_0.tmp_0.txt"; reader.open(base_path + filename); for (int i = 0; i < rois->numel(); i++) { reader >> rois_data[i]; } LOG(INFO) << "Read Rois data." << rois_data[0]; reader.close(); // probs filename = "result_generate_proposals_0.tmp_1.txt"; reader.open(base_path + filename); for (int i = 0; i < probs->numel(); i++) { reader >> probs_data[i]; } LOG(INFO) << "Read Probs data." << probs_data[0]; reader.close(); } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("generate_proposals"); op_desc->SetInput("Scores", {Scores_}); op_desc->SetInput("BboxDeltas", {BboxDeltas_}); op_desc->SetInput("ImInfo", {ImInfo_}); op_desc->SetInput("Anchors", {Anchors_}); op_desc->SetInput("Variances", {Variances_}); op_desc->SetAttr("pre_nms_topN", pre_nms_topN_); op_desc->SetAttr("post_nms_topN", post_nms_topN_); op_desc->SetAttr("nms_thresh", nms_thresh_); op_desc->SetAttr("min_size", min_size_); op_desc->SetAttr("eta", eta_); op_desc->SetOutput("RpnRois", {RpnRois_}); op_desc->SetOutput("RpnRoiProbs", {RpnRoiProbs_}); } void PrepareData() override { std::string base_path = "/data/local/tmp/data_files/"; std::string filename; DDim dims; std::vector datas; std::ifstream reader; // Scores filename = "result_rpn_cls_prob.tmp_0.txt"; dims = DDim(std::vector({2, 15, 84, 50})); datas.resize(dims.production()); reader.open(base_path + filename); for (int i = 0; i < dims.production(); i++) { reader >> datas[i]; } LOG(INFO) << "Read Scores data." << datas[0]; reader.close(); SetCommonTensor(Scores_, dims, datas.data()); // BboxDeltas filename = "result_rpn_bbox_pred.tmp_1.txt"; dims = DDim(std::vector({2, 60, 84, 50})); datas.resize(dims.production()); reader.open(base_path + filename); for (int i = 0; i < dims.production(); i++) { reader >> datas[i]; } LOG(INFO) << "Read BboxDeltas data." << datas[0]; reader.close(); reader.close(); SetCommonTensor(BboxDeltas_, dims, datas.data()); // ImInfo filename = "result_im_info.txt"; dims = DDim(std::vector({2, 3})); datas.resize(dims.production()); reader.open(base_path + filename); for (int i = 0; i < dims.production(); i++) { reader >> datas[i]; } LOG(INFO) << "Read ImInfo data." << datas[0]; reader.close(); SetCommonTensor(ImInfo_, dims, datas.data()); // Anchors filename = "result_anchor_generator_0.tmp_0.txt"; dims = DDim(std::vector({84, 50, 15, 4})); datas.resize(dims.production()); reader.open(base_path + filename); for (int i = 0; i < dims.production(); i++) { reader >> datas[i]; } LOG(INFO) << "Read Anchors data." << datas[0]; reader.close(); SetCommonTensor(Anchors_, dims, datas.data()); // Variances filename = "result_anchor_generator_0.tmp_1.txt"; dims = DDim(std::vector({84, 50, 15, 4})); datas.resize(dims.production()); reader.open(base_path + filename); for (int i = 0; i < dims.production(); i++) { reader >> datas[i]; } LOG(INFO) << "Read Variances data." << datas[0]; reader.close(); SetCommonTensor(Variances_, dims, datas.data()); } }; TEST(GenerateProposals, precision) { // The unit test for generate_proposals needs the params, // which is obtained by runing model by paddle. LOG(INFO) << "test generate proposals op"; #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); std::unique_ptr tester( new GenerateProposalsComputeTester(place, "def")); arena::Arena arena(std::move(tester), place, 2e-5); arena.TestPrecision(); #endif } } // namespace lite } // namespace paddle