// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/tests/utils/fill_data.h" #include "lite/tests/utils/naive_math_impl.h" #ifdef LITE_WITH_ARM #include "lite/backends/arm/math/funcs.h" #endif // LITE_WITH_ARM #include "lite/core/context.h" #include "lite/core/profile/timer.h" #include "lite/core/tensor.h" #include "lite/tests/utils/tensor_utils.h" typedef paddle::lite::Tensor Tensor; using paddle::lite::profile::Timer; DEFINE_int32(power_mode, 3, "power mode: " "0 for POWER_HIGH;" "1 for POWER_LOW;" "2 for POWER_FULL;" "3 for NO_BIND"); DEFINE_int32(threads, 1, "threads num"); DEFINE_int32(warmup, 0, "warmup times"); DEFINE_int32(repeats, 1, "repeats times"); DEFINE_bool(basic_test, true, "do all tests"); DEFINE_bool(check_result, true, "check the result"); DEFINE_int32(M, 512, "gemv: M"); DEFINE_int32(N, 512, "gemv: N"); DEFINE_bool(traA, false, "gemv: A transpose"); DEFINE_int32(flag_act, 0, "do act"); DEFINE_bool(flag_bias, false, "with bias"); DEFINE_double(leakey_relu_alpha, 1.0, "leakey relu alpha"); DEFINE_double(clipped_coef, 6.0, "clipped relu coef"); bool test_gemv_int8(bool tra, int m, int n, bool has_bias, int flag_act, int cls, int ths, float six = 6.f, float alpha = 1.f) { Tensor ta; Tensor tb; Tensor tc_int8; Tensor tc_fp32; Tensor tc_basic_int8; Tensor tc_basic_fp32; Tensor tbias; ta.Resize({m, n}); tb.Resize({n}); tc_int8.Resize({m}); tc_fp32.Resize({m}); tc_basic_int8.Resize({m}); tc_basic_fp32.Resize({m}); tbias.Resize({m}); ta.set_precision(PRECISION(kInt8)); tb.set_precision(PRECISION(kInt8)); tc_int8.set_precision(PRECISION(kInt8)); tc_fp32.set_precision(PRECISION(kFloat)); tc_basic_int8.set_precision(PRECISION(kInt8)); tc_basic_fp32.set_precision(PRECISION(kFloat)); tbias.set_precision(PRECISION(kFloat)); fill_tensor_rand(ta, -127, 127); fill_tensor_rand(tb, -127, 127); fill_tensor_rand(tbias, -1.f, 1.f); std::vector scale_a(static_cast(m), 1.f / 127); std::vector scale_b = {1.f / 127}; std::vector scale_c = {n / 127.f}; std::vector scale_merge_fp32(static_cast(m)); std::vector scale_merge_int8(static_cast(m)); for (int j = 0; j < m; ++j) { scale_merge_fp32[j] = scale_a[j] * scale_b[0]; scale_merge_int8[j] = scale_merge_fp32[j] / scale_c[0]; } LOG(INFO) << "gemv_int8 M: " << m << ", N: " << n << ", transA: " << (tra ? "true" : "false") << ", act: " << flag_act << ", bias: " << (has_bias ? "true" : "false"); #ifdef LITE_WITH_ARM auto da = ta.mutable_data(); auto db = tb.mutable_data(); auto dc_int8 = tc_int8.mutable_data(); auto dc_fp32 = tc_fp32.mutable_data(); auto dc_basic_int8 = tc_basic_int8.mutable_data(); auto dc_basic_fp32 = tc_basic_fp32.mutable_data(); auto dbias = tbias.mutable_data(); paddle::lite_api::ActivationType act = paddle::lite_api::ActivationType::kIndentity; if (flag_act == 1) { act = paddle::lite_api::ActivationType::kRelu; } else if (flag_act == 2) { act = paddle::lite_api::ActivationType::kRelu6; } else if (flag_act == 4) { act = paddle::lite_api::ActivationType::kLeakyRelu; } if (FLAGS_check_result) { Tensor ta_fp32; Tensor tb_fp32; ta_fp32.Resize({m, n}); ta_fp32.set_precision(PRECISION(kFloat)); tb_fp32.Resize({n}); tb_fp32.set_precision(PRECISION(kFloat)); auto da_fp32 = ta_fp32.mutable_data(); auto db_fp32 = tb_fp32.mutable_data(); paddle::lite::arm::math::int8_to_fp32( da, da_fp32, scale_a.data(), 1, 1, ta.numel()); paddle::lite::arm::math::int8_to_fp32( db, db_fp32, scale_b.data(), 1, 1, tb.numel()); basic_gemv(m, n, da_fp32, db_fp32, dbias, dc_basic_fp32, 1.f, 0.f, false, has_bias, flag_act, six, alpha); paddle::lite::arm::math::fp32_to_int8(dc_basic_fp32, dc_basic_int8, scale_c.data(), 1, 1, tc_basic_fp32.numel()); } Timer t0; //! compute double ops = 2.0 * m * n; std::unique_ptr ctx1( new paddle::lite::KernelContext); auto& ctx = ctx1->As(); ctx.SetRunMode(static_cast(cls), ths); /// warmup for (int j = 0; j < FLAGS_warmup; ++j) { paddle::lite::arm::math::gemv_int8(da, db, dc_fp32, false, m, n, scale_merge_fp32.data(), has_bias, dbias, flag_act > 0, act, &ctx, six, alpha); } /// int8 output compute Tensor tbias_int8; tbias_int8.Resize(tbias.dims()); tbias_int8.set_precision(PRECISION(kFloat)); auto dbias_int8 = tbias_int8.mutable_data(); for (int l = 0; l < tbias_int8.numel(); ++l) { dbias_int8[l] = dbias[l] / scale_c[0]; } for (int i = 0; i < FLAGS_repeats; ++i) { t0.Start(); paddle::lite::arm::math::gemv_int8(da, db, dc_fp32, false, m, n, scale_merge_fp32.data(), has_bias, dbias, flag_act > 0, act, &ctx, six, alpha); t0.Stop(); } LOG(INFO) << "gemv_int8_int8 output: M: " << m << ", N: " << n << ", power_mode: " << cls << ", threads: " << ths << ", GOPS: " << ops * 1e-9f << " GOPS, avg time: " << t0.LapTimes().Avg() << " ms, min time: " << t0.LapTimes().Min() << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg() << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min() << " GOPs"; /// fp32 output compute t0.Reset(); for (int i = 0; i < FLAGS_repeats; ++i) { t0.Start(); paddle::lite::arm::math::gemv_int8(da, db, dc_int8, false, m, n, scale_merge_int8.data(), has_bias, dbias_int8, flag_act > 0, act, &ctx, six / scale_c[0], alpha); t0.Stop(); } LOG(INFO) << "gemm_int8_fp32 output: M: " << m << ", N: " << n << ", power_mode: " << cls << ", threads: " << ths << ", GOPS: " << ops * 1e-9f << " GOPS, avg time: " << t0.LapTimes().Avg() << " ms, min time: " << t0.LapTimes().Min() << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg() << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min() << " GOPs"; if (FLAGS_check_result) { double max_ratio = 0; double max_diff = 0; /// fp32 result tensor_cmp_host(tc_basic_fp32, tc_fp32, max_ratio, max_diff); LOG(INFO) << "fp32 compare result, max diff: " << max_diff << ", max ratio: " << max_ratio; if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) { Tensor tdiff; tdiff.set_precision(PRECISION(kFloat)); tdiff.Resize(tc_fp32.dims()); tensor_diff(tc_basic_fp32, tc_fp32, tdiff); LOG(INFO) << "basic result: "; print_tensor(tc_basic_fp32); LOG(INFO) << "lite result: "; print_tensor(tc_fp32); LOG(INFO) << "diff result: "; print_tensor(tdiff); return false; } /// int8 result max_ratio = 0; max_diff = 0; tensor_cmp_host(tc_basic_int8, tc_int8, max_ratio, max_diff); LOG(INFO) << "int8 compare result, max diff: " << max_diff << ", max ratio: " << max_ratio; if (fabs(max_ratio) > 1e-4f) { Tensor tdiff; tdiff.Resize(tc_int8.dims()); tdiff.set_precision(PRECISION(kInt8)); tensor_diff(tc_basic_int8, tc_int8, tdiff); auto ptr = tdiff.data(); auto ptr_basic_fp32 = tc_basic_fp32.data(); float count = 0; bool check = true; for (int i = 0; i < tdiff.numel(); ++i) { if (abs(ptr[i]) > 1) { check = false; LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i] << ", after scale: " << ptr_basic_fp32[i] / scale_c[0]; break; } if (ptr[i] != 0) { LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i] << ", after scale: " << ptr_basic_fp32[i] / scale_c[0]; count += 1; } } check = check && count < std::max(10, static_cast(0.01 * tdiff.numel())); if (!check) { LOG(WARNING) << "int8 basic result"; print_tensor(tc_basic_int8); LOG(WARNING) << "int8 lite result"; print_tensor(tc_int8); LOG(WARNING) << "int8 diff tensor"; print_tensor(tdiff); return false; } } } #endif return true; } TEST(TestLiteGemvInt8, gemv_prepacked_int8) { if (FLAGS_basic_test) { #ifdef LITE_WITH_ARM paddle::lite::DeviceInfo::Init(); #endif LOG(INFO) << "run basic sgemm test"; for (auto& m : {1, 3, 8, 32}) { // ,397 for (auto& n : {1, 3, 13, 141, 512, 789}) { for (auto& tra : {false}) { for (auto& has_bias : {false, true}) { for (auto& has_relu : {false, true}) { for (auto& th : {1, 2, 4}) { float six = 6.f; float alpha = 8.88f; auto flag = test_gemv_int8(tra, m, n, has_bias, has_relu > 0, FLAGS_power_mode, th, six, alpha); if (flag) { LOG(INFO) << "test m = " << m << ", n=" << n << ", bias: " << (has_bias ? "true" : "false") << ", relu: " << (has_relu ? "true" : "false") << ", trans A: " << (tra ? "true" : "false") << " passed\n"; } else { LOG(FATAL) << "test m = " << m << ", n=" << n << ", bias: " << (has_bias ? "true" : "false") << ", relu: " << (has_relu ? "true" : "false") << ", trans A: " << (tra ? "true" : "false") << " failed\n"; } } } } } } } } } TEST(TestGemvInt8Custom, gemv_prepacked_int8_custom) { #ifdef LITE_WITH_ARM paddle::lite::DeviceInfo::Init(); #endif auto flag = test_gemv_int8(FLAGS_traA, FLAGS_M, FLAGS_N, FLAGS_flag_bias, FLAGS_flag_act, FLAGS_power_mode, FLAGS_threads, FLAGS_clipped_coef, FLAGS_leakey_relu_alpha); if (!flag) { LOG(FATAL) << "test m = " << FLAGS_M << ", n=" << FLAGS_N << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias << ", act: " << FLAGS_flag_act << " failed!!"; } LOG(INFO) << "test m = " << FLAGS_M << ", n=" << FLAGS_N << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias << ", act: " << FLAGS_flag_act << " passed!!"; }