// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/backends/opencl/target_wrapper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/kernels/opencl/test_helper.h" #define FP16_MAX_DIFF (5e-1) namespace paddle { namespace lite { TEST(pixel_shuffle_image2d, compute) { LOG(INFO) << "create kernel ..."; auto kernels = KernelRegistry::Global().Create("pixel_shuffle", TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault)); ASSERT_FALSE(kernels.empty()); const int INPUT_N = 1; const int INPUT_C = 4; const int INPUT_H = 2; const int INPUT_W = 2; const int UPSCALE_FACTOR = 2; auto kernel = std::move(kernels.front()); LOG(INFO) << "prepare to test kernel ====> " << kernel->doc(); lite::Tensor x, out; operators::PixelShuffleParam param; param.x = &x; param.output = &out; param.upscale_factor = UPSCALE_FACTOR; std::unique_ptr context(new KernelContext); context->As().InitOnce(); kernel->SetParam(param); std::unique_ptr pixel_shuffle_context(new KernelContext); context->As().CopySharedTo( &(pixel_shuffle_context->As())); kernel->SetContext(std::move(pixel_shuffle_context)); const DDim in_dim = DDim(std::vector{INPUT_N, INPUT_C, INPUT_H, INPUT_W}); const DDim out_dim = DDim( std::vector{INPUT_N, INPUT_C / UPSCALE_FACTOR / UPSCALE_FACTOR, INPUT_H * UPSCALE_FACTOR, INPUT_W * UPSCALE_FACTOR}); LOG(INFO) << "in_dim: " << in_dim; LOG(INFO) << "UPSCALE_FACTOR: " << UPSCALE_FACTOR; LOG(INFO) << "out_dim: " << out_dim; x.Resize(in_dim); out.Resize(out_dim); std::default_random_engine engine; std::uniform_real_distribution dist(-2, 2); std::vector input_v(INPUT_N * INPUT_C * INPUT_H * INPUT_W); int index = 0; for (auto& i : input_v) { i = index++; } VLOG(1) << "input_v ..... "; for (size_t i = 0; i < input_v.size(); i++) { VLOG(10) << input_v[i]; } LOG(INFO) << "prepare input"; CLImageConverterDefault* default_converter = new CLImageConverterDefault(); DDim x_image_shape = default_converter->InitImageDimInfoWith(in_dim); LOG(INFO) << "x_image_shape = " << x_image_shape[0] << " " << x_image_shape[1]; std::vector x_image_data(x_image_shape.production() * 4); // 4 : RGBA default_converter->NCHWToImage(input_v.data(), x_image_data.data(), in_dim); auto* x_image = x.mutable_data( x_image_shape[0], x_image_shape[1], x_image_data.data()); VLOG(1) << "x_image_data ..... "; for (size_t i = 0; i < x_image_data.size(); i++) { VLOG(10) << Half2Float(x_image_data[i]); } DDim out_image_shape = default_converter->InitImageDimInfoWith(out_dim); LOG(INFO) << "out_image_shape = " << out_image_shape[0] << " " << out_image_shape[1]; auto* out_image = out.mutable_data(out_image_shape[0], out_image_shape[1]); kernel->Launch(); CLRuntime::Global()->command_queue().finish(); std::vector out_data_v{ 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15}; const size_t cl_image2d_row_pitch{0}; const size_t cl_image2d_slice_pitch{0}; half_t* out_image_data = new half_t[out_image_shape.production() * 4]; TargetWrapperCL::ImgcpySync(out_image_data, out_image, out_image_shape[0], out_image_shape[1], cl_image2d_row_pitch, cl_image2d_slice_pitch, IoDirection::DtoH); VLOG(1) << "out_image_data ..... "; for (size_t i = 0; i < out_image_shape.production() * 4; i++) { VLOG(10) << Half2Float(out_image_data[i]); } float* out_data = new float[out_image_shape.production() * 4]; default_converter->ImageToNCHW( out_image_data, out_data, out_image_shape, out_dim); VLOG(1) << "out_data ..... "; for (int i = 0; i < out_dim.production(); i++) { VLOG(10) << out_data[i]; } for (int i = 0; i < out_dim.production(); i++) { auto abs_diff = abs(out_data[i] - out_data_v[i]); auto relative_diff = COMPUTE_RELATIVE_DIFF(out_data[i], out_data_v[i]); EXPECT_EQ((relative_diff <= FP16_MAX_DIFF) || (abs_diff <= FP16_MAX_DIFF), true); if ((relative_diff > FP16_MAX_DIFF) && (abs_diff > FP16_MAX_DIFF)) { LOG(ERROR) << "error idx:" << i << " out_data[" << i << "]:" << out_data[i] << " " "out_ref[" << i << "]:" << out_data_v[i] << " abs_diff:" << abs_diff << " relative_diff:" << relative_diff << " FP16_MAX_DIFF:" << FP16_MAX_DIFF; } } } } // namespace lite } // namespace paddle USE_LITE_KERNEL(pixel_shuffle, kOpenCL, kFP16, kImageDefault, image2d);