// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" #ifdef LITE_WITH_PROFILE #include "lite/core/profile/profiler.h" #endif #include "lite/backends/opencl/cl_utility.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class PixelShuffleComputeImage2D : public KernelLite { public: using param_t = operators::PixelShuffleParam; std::string doc() const override { return "PixelShuffle using cl::Image2D, kFP16"; } void PrepareForRun() override { VLOG(1) << "kernel_func_name_:" << kernel_func_name_; auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "image/pixel_shuffle_kernel.cl", build_options_, time_stamp_); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; kernel_ = context.cl_context()->GetKernel(kernel_key.str()); } void ReInitWhenNeeded() override { VLOG(1) << "ReInitWhenNeeded: " << kernel_func_name_; pixel_shuffle_param_ = param_.get_mutable(); auto x_dims = pixel_shuffle_param_->x->dims(); auto out_dims = pixel_shuffle_param_->output->dims(); VLOG(1) << "x_dims: " << x_dims; VLOG(1) << "out_dims: " << out_dims; VLOG(1) << "upscale_factor: " << pixel_shuffle_param_->upscale_factor; if ((!first_epoch_for_reinit_ && x_dims != last_x_dims_) || first_epoch_for_reinit_) { last_x_dims_ = x_dims; first_epoch_for_reinit_ = false; // compute image shape paddle::lite::CLImageConverterDefault default_convertor; out_img_shape_ = default_convertor.InitImageDimInfoWith( pixel_shuffle_param_->output->dims()); VLOG(1) << "out_img_shape_: " << out_img_shape_[0] << " " << out_img_shape_[1]; // compute global work size auto image_width = out_dims[3] * ((out_dims[1] + 3) / 4); size_t work_size_0 = image_width / out_dims[3]; size_t work_size_1 = out_dims[3]; size_t work_size_2 = out_dims[0] * out_dims[2]; global_work_size_ = cl::NDRange{work_size_0, work_size_1, work_size_2}; VLOG(1) << "global_work_size_: " << global_work_size_[0] << " " << global_work_size_[1] << " " << global_work_size_[2]; } } void Run() override { auto* x_img = pixel_shuffle_param_->x->data(); auto* out_img = pixel_shuffle_param_->output->mutable_data( out_img_shape_[0], out_img_shape_[1]); auto x_dims = pixel_shuffle_param_->x->dims(); int in_n = x_dims[0]; int in_c = x_dims[1]; int in_h = x_dims[2]; int in_w = x_dims[3]; auto out_dims = pixel_shuffle_param_->output->dims(); int out_n = out_dims[0]; int out_c = out_dims[1]; int out_h = out_dims[2]; int out_w = out_dims[3]; const int upscale_factor = pixel_shuffle_param_->upscale_factor; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto kernel = kernel_; cl_int status; status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, in_n); CL_CHECK_FATAL(status); status = kernel.setArg(3, in_c); CL_CHECK_FATAL(status); status = kernel.setArg(4, in_h); CL_CHECK_FATAL(status); status = kernel.setArg(5, in_w); CL_CHECK_FATAL(status); status = kernel.setArg(6, out_n); CL_CHECK_FATAL(status); status = kernel.setArg(7, out_c); CL_CHECK_FATAL(status); status = kernel.setArg(8, out_h); CL_CHECK_FATAL(status); status = kernel.setArg(9, out_w); CL_CHECK_FATAL(status); status = kernel.setArg(10, upscale_factor); CL_CHECK_FATAL(status); status = EnqueueNDRangeKernel(context, kernel, cl::NullRange, global_work_size_, cl::NullRange, nullptr, event_); CL_CHECK_FATAL(status); } #ifdef LITE_WITH_PROFILE void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) { ch->kernel_func_name = kernel_func_name_; ch->cl_event = event_; // `event_` defined in `kernel.h`, valid after kernel::Run } #endif private: std::string kernel_func_name_{"pixel_shuffle"}; std::string build_options_{"-DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; param_t* pixel_shuffle_param_{nullptr}; cl::Kernel kernel_; bool first_epoch_for_reinit_{true}; DDim last_x_dims_; DDim out_img_shape_ = DDim(std::vector( {static_cast(1), static_cast(1)})); cl::NDRange global_work_size_ = cl::NDRange{ static_cast(1), static_cast(1), static_cast(1)}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(pixel_shuffle, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::PixelShuffleComputeImage2D, image2d) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();