// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_image_converter.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/logging.h" #include "lite/utils/replace_stl/stream.h" #ifdef LITE_WITH_PROFILE #include "lite/core/profile/profiler.h" #endif #include "lite/backends/opencl/cl_utility.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class LrnImageCompute : public KernelLite { public: using param_t = operators::LrnParam; std::string doc() const override { return "Lrn using cl::Image2D(ImageDefault/RGBA), kFP16"; } void PrepareForRun() override { lrn_param_ = param_.get_mutable(); auto& context = ctx_->As(); n_ = lrn_param_->n; k_ = lrn_param_->k; alpha_ = lrn_param_->alpha; beta_ = lrn_param_->beta; norm_region_ = lrn_param_->norm_region; context.cl_context()->AddKernel( kernel_func_name_, "image/lrn_kernel.cl", build_options_, time_stamp_); VLOG(1) << "kernel_func_name_:" << kernel_func_name_; } void Run() override { auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* x = lrn_param_->X; auto* out = lrn_param_->Out; if (norm_region_ != "AcrossChannels") { LOG(FATAL) << "This norm_region_: " << norm_region_ << "doesn't support"; return; } auto out_dims = out->dims(); auto in_dims = x->dims(); #ifdef LITE_WITH_LOG VLOG(4) << "x->target(): " << TargetToStr(x->target()); VLOG(4) << "out->target(): " << TargetToStr(out->target()); VLOG(4) << "x->dims(): " << in_dims; VLOG(4) << "lrn param: "; VLOG(4) << "n: " << n_; VLOG(4) << "k: " << k_; VLOG(4) << "alpha: " << alpha_; VLOG(4) << "beta: " << beta_; VLOG(4) << "norm_region: " << norm_region_; #endif auto out_image_shape = InitImageDimInfoWith(out_dims); auto* x_img = x->data(); // VLOG(4) << "x_image: " << x_img; auto* out_img = out->mutable_data( out_image_shape["width"], out_image_shape["height"]); #ifdef LITE_WITH_LOG // VLOG(4) << "out_image" << out_img; VLOG(4) << "out_image_shape[w,h]:" << out_image_shape["width"] << " " << out_image_shape["height"]; #endif STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int arg_idx = 0; int out_channel = out_dims[1]; int out_width = out_dims[3]; auto default_work_size = DefaultWorkSize(out_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); #ifdef LITE_WITH_LOG VLOG(4) << "default_work_size: " << default_work_size[0] << ", " << default_work_size[1] << ", " << default_work_size[3]; #endif cl_int status = kernel.setArg(arg_idx++, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(arg_idx++, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(arg_idx++, out_channel); CL_CHECK_FATAL(status); status = kernel.setArg(arg_idx++, out_width); CL_CHECK_FATAL(status); status = kernel.setArg(arg_idx++, n_); CL_CHECK_FATAL(status); status = kernel.setArg(arg_idx++, k_); CL_CHECK_FATAL(status); status = kernel.setArg(arg_idx++, alpha_); CL_CHECK_FATAL(status); status = kernel.setArg(arg_idx++, beta_); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size[0]), static_cast(default_work_size[1]), static_cast(default_work_size[2])}; status = EnqueueNDRangeKernel(context, kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_); CL_CHECK_FATAL(status); #ifdef LITE_WITH_LOG VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " " << global_work_size[1] << " " << global_work_size[2]; #endif } #ifdef LITE_WITH_PROFILE void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) { ch->kernel_func_name = kernel_func_name_; ch->cl_event = event_; // `event_` defined in `kernel.h`, valid after kernel::Run } #endif protected: param_t* lrn_param_{nullptr}; int n_{5}; float alpha_{1e-4}; float beta_{0.75}; float k_{1.}; std::string norm_region_{"AcrossChannels"}; std::string kernel_func_name_{"lrn"}; std::string build_options_{"-DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle namespace ocl = paddle::lite::kernels::opencl; REGISTER_LITE_KERNEL( lrn, kOpenCL, kFP16, kImageDefault, ocl::LrnImageCompute, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();