// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/cuda/feed_compute.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace cuda { template void FeedCompute::Run() { auto& param = this->template Param(); auto& ctx = this->ctx_->template As(); auto stream = ctx.exec_stream(); VLOG(4) << "feed_list.size: " << param.feed_list->size(); const lite::Tensor& feed_item = (*param.feed_list)[param.col]; int num = static_cast(feed_item.numel()); auto input = feed_item.data(); param.out->Resize(feed_item.dims()); auto output = param.out->template mutable_data(TARGET(kCUDA)); VLOG(4) << "col: " << param.col << " num:" << num; TargetW::MemcpyAsync( output, input, num * sizeof(T), IoDirection::HtoD, stream); } } // namespace cuda } // namespace kernels } // namespace lite } // namespace paddle typedef paddle::lite::kernels::cuda::FeedCompute FeedFp32; typedef paddle::lite::kernels::cuda::FeedCompute FeedInt64; typedef paddle::lite::kernels::cuda::FeedCompute FeedInt32; REGISTER_LITE_KERNEL(feed, kCUDA, kFloat, kNCHW, FeedFp32, nchw) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL(feed, kCUDA, kFloat, kNHWC, FeedFp32, nhwc) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(feed, kCUDA, kInt64, kNCHW, FeedInt64, nchw) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt64), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt64), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL(feed, kCUDA, kInt64, kNHWC, FeedInt64, nhwc) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt64), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt64), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(feed, kCUDA, kInt32, kNCHW, FeedInt32, nchw) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt32), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL(feed, kCUDA, kInt32, kNHWC, FeedInt32, nhwc) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA), PRECISION(kInt32), DATALAYOUT(kNHWC))}) .Finalize();