// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/conv_winograd.h" #include "lite/backends/arm/math/conv_impl.h" #include "lite/backends/arm/math/packed_sgemm.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template <> void WinogradConv::ReInitWhenNeeded() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); int threads = ctx.threads(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); if (last_shape_ == x_dims) { return; } last_shape_ = x_dims; //! update workspace size int ic = x_dims[1]; int ih = x_dims[2]; int iw = x_dims[3]; int oc = o_dims[1]; int oh = o_dims[2]; int ow = o_dims[3]; int tile_block = 8; auto pad = *(param.paddings); int pad_h0 = pad[0]; int pad_h1 = pad[1]; int pad_w0 = pad[2]; int pad_w1 = pad[3]; int oc_pad = (oc + 3) / 4 * 4; int ic_pad = (ic + 3) / 4 * 4; const int new_input_size = (ic + 3) / 4 * 4 * (ih + pad_h0 + pad_h1) * (iw + pad_w0 + pad_w1); const int temp_size = (tile_block * ((ic + 3) / 4 + (oc + 3) / 4) * 4 * wino_iw * wino_iw + 8 * wino_iw * wino_iw) * threads; workspace_size_ = (temp_size + new_input_size) * sizeof(float); //! update trans weights impl choose_small_ = ow * oh / (tile_block * threads) < 36 ? true : false; if (choose_small_) { wino_iw = 4; if (last_function_ == 0) { return; } last_function_ = 0; } else { wino_iw = 8; if (last_function_ == 1) { return; } last_function_ = 1; } weights_.Resize({1, 1, 1, wino_iw * wino_iw * oc_pad * ic_pad}); void* trans_tmp_ptr = malloc(sizeof(float) * wino_iw * wino_iw * oc * ic); auto weights_data_ = weights_.mutable_data(); if (!choose_small_) { lite::arm::math::weight_trans_c4_8x8( weights_data_, param.filter->data(), ic, oc, trans_tmp_ptr); } else { lite::arm::math::weight_trans_c4_4x4( weights_data_, param.filter->data(), ic, oc, trans_tmp_ptr); } free(trans_tmp_ptr); } template <> void WinogradConv::PrepareForRun() { ReInitWhenNeeded(); } #ifdef LITE_WITH_PROFILE template <> void WinogradConv:: SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) { ch->kernel_func_name = kernel_func_name_; } #endif template <> void WinogradConv::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); ctx.ExtendWorkspace(workspace_size_); const auto* i_data = param.x->data(); const auto* w_data = weights_.data(); const auto* b_data = param.bias ? param.bias->data() : nullptr; auto* o_data = param.output->mutable_data(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); int iw = x_dims[3]; // nchw int ih = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int oh = o_dims[2]; int ow = o_dims[3]; int oc = o_dims[1]; if (!choose_small_) { lite::arm::math::conv_compute_6x6_3x3(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx); #ifdef LITE_WITH_PROFILE kernel_func_name_ = "conv_compute_6x6_3x3"; #endif } else { int tile_block = 8; int block_count = (((ow + 1) / 2) * ((oh + 1) / 2) + tile_block - 1) / tile_block; if (block_count != 1) { lite::arm::math::conv_compute_2x2_3x3(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx); #ifdef LITE_WITH_PROFILE kernel_func_name_ = "conv_compute_2x2_3x3"; #endif } else { lite::arm::math::conv_compute_2x2_3x3_small(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx); #ifdef LITE_WITH_PROFILE kernel_func_name_ = "conv_compute_2x2_3x3_small"; #endif } } } template void WinogradConv::ReInitWhenNeeded() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); int threads = ctx.threads(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); if (last_shape_ == x_dims) { return; } last_shape_ = x_dims; //! update workspace size int ic = x_dims[1]; int ih = x_dims[2]; int iw = x_dims[3]; int oc = o_dims[1]; int oh = o_dims[2]; int ow = o_dims[3]; int tile_block = 8; auto pad = *(param.paddings); int pad_h0 = pad[0]; int pad_h1 = pad[1]; int pad_w0 = pad[2]; int pad_w1 = pad[3]; int oc_pad = (oc + 7) / 8 * 8; int ic_pad = (ic + 7) / 8 * 8; const int new_input_size = ic_pad * (ih + pad_h0 + pad_h1) * (iw + pad_w0 + pad_w1) + oc_pad * oh * ow * sizeof(int32_t); int tmp_input_thread_size_byte = tile_block * ic_pad * wino_iw * wino_iw * sizeof(int16_t); int tmp_output_thread_size_byte = tile_block * oc_pad * wino_iw * wino_iw * sizeof(int32_t); const int temp_size = (tmp_input_thread_size_byte + tmp_output_thread_size_byte + wino_iw * wino_iw * (8 + 8 * sizeof(int32_t))) * threads; workspace_size_ = temp_size + new_input_size; //! update trans weights impl // choose_small_ = ow * oh / (tile_block * threads) < 36 ? true : false; // we only support 2x2 now choose_small_ = true; float w_fact = 0.25; if (choose_small_) { wino_iw = 4; if (last_function_ == 0) { return; } last_function_ = 0; } else { wino_iw = 6; if (last_function_ == 1) { return; } last_function_ = 1; } /// update scale for (auto& ws : w_scale_) { ws *= w_fact; } weights_.Resize({1, 1, 1, wino_iw * wino_iw * oc_pad * ic_pad}); void* trans_tmp_ptr = malloc(sizeof(int16_t) * wino_iw * wino_iw * oc * ic); auto weights_data_ = weights_.mutable_data(); if (!choose_small_) { } else { lite::arm::math::weight_trans_c8_4x4_int8( weights_data_, param.filter->template data(), ic, oc, trans_tmp_ptr); } free(trans_tmp_ptr); } template void WinogradConv::PrepareForRun() { auto& param = this->Param(); w_scale_ = param.weight_scale; if (w_scale_.size() != 1 && w_scale_.size() != param.filter->dims()[0]) { LOG(FATAL) << "weights scale size must equal to filter size"; return; } if (w_scale_.size() == 1) { for (int i = 0; i < param.filter->dims()[0] - 1; ++i) { w_scale_.push_back(w_scale_[0]); } } float input_scale = param.input_scale; for (auto& ws : w_scale_) { ws *= input_scale; } if (param.bias) { bias_.Resize(param.bias->dims()); auto ptr = bias_.mutable_data(); auto ptr_in = param.bias->template data(); for (int i = 0; i < bias_.numel(); ++i) { ptr[i] = ptr_in[i]; } } if (OutType == PRECISION(kInt8)) { float output_scale = param.output_scale; for (auto& ws : w_scale_) { ws /= output_scale; } if (param.bias) { auto ptr = bias_.mutable_data(); for (int i = 0; i < bias_.numel(); ++i) { ptr[i] /= output_scale; } } } ReInitWhenNeeded(); } template void WinogradConv::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); ctx.ExtendWorkspace(workspace_size_); const auto* i_data = param.x->template data(); const auto* w_data = weights_.data(); const auto* b_data = param.bias ? bias_.data() : nullptr; // const float* i_data; auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); int iw = x_dims[3]; // nchw int ih = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int oh = o_dims[2]; int ow = o_dims[3]; int oc = o_dims[1]; // now always choose small if (OutType == PRECISION(kInt8)) { auto* o_data = param.output->template mutable_data(); lite::arm::math::conv_compute_2x2_3x3_int8(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, w_scale_.data(), param, &ctx); } else { auto* o_data = param.output->template mutable_data(); lite::arm::math::conv_compute_2x2_3x3_int8(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, w_scale_.data(), param, &ctx); } } template class WinogradConv; template class WinogradConv; } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle