// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/kernels/host/one_hot_compute.h" #include "lite/utils/paddle_enforce.h" namespace paddle { namespace lite { namespace kernels { namespace host { void OneHotCompute::Run() { auto& param = Param(); param.Out->mutable_data(); int depth = param.depth; if (param.depth_tensor) { auto* depth_tensor = param.depth_tensor; auto* depth_data = depth_tensor->data(); depth = depth_data[0]; auto in_dims = param.X->dims(); DDim out_dims(in_dims); out_dims[out_dims.size() - 1] = depth; param.Out->Resize(out_dims); } auto* p_in_data = param.X->data(); auto numel = param.X->numel(); auto* p_out_data = param.Out->mutable_data(); for (int i = 0; i < param.Out->numel(); ++i) { p_out_data[i] = 0; } if (param.allow_out_of_range) { for (int i = 0; i < numel; ++i) { if (p_in_data[i] >= 0 && p_in_data[i] < param.depth) { *(p_out_data + i * param.depth + (int)(p_in_data[i])) = 1.0; // NOLINT } } } else { for (int i = 0; i < numel; ++i) { PADDLE_ENFORCE_GE( p_in_data[i], 0, "Illegal index value, should be at least 0."); PADDLE_ENFORCE_LT(p_in_data[i], param.depth, "Illegal index value, should be less than depth (%d).", param.depth); *(p_out_data + i * param.depth + (int)(p_in_data[i])) = 1.0; // NOLINT } } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(one_hot, kHost, kFloat, kNCHW, paddle::lite::kernels::host::OneHotCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize();