// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "lite/api/paddle_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/device_info.h" #include "lite/core/profile/timer.h" #include "lite/utils/cp_logging.h" #include "lite/utils/string.h" #ifdef LITE_WITH_PROFILE #include "lite/core/profile/basic_profiler.h" #endif // LITE_WITH_PROFILE using paddle::lite::profile::Timer; DEFINE_string(input_shape, "1,3,224,224", "input shapes, separated by colon and comma"); DEFINE_bool(use_optimize_nb, false, "optimized & naive buffer model for mobile devices"); DEFINE_string(arg_name, "", "the arg name"); DEFINE_string(threshold, "0.5", "threshold value default 0.5f"); DEFINE_string(in_txt, "", "input text"); DEFINE_string(out_txt, "", "output text"); DEFINE_string(label_file, "", "label file path"); DEFINE_int32(topk, 1, "topk num"); namespace paddle { namespace lite_api { void OutputOptModel(const std::string& load_model_dir, const std::string& save_optimized_model_dir, const std::vector>& input_shapes) { lite_api::CxxConfig config; config.set_model_dir(load_model_dir); config.set_valid_places({ Place{TARGET(kARM), PRECISION(kFloat)}, }); auto predictor = lite_api::CreatePaddlePredictor(config); // delete old optimized model int ret = system( paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str()) .c_str()); if (ret == 0) { LOG(INFO) << "delete old optimized model " << save_optimized_model_dir; } predictor->SaveOptimizedModel(save_optimized_model_dir, LiteModelType::kNaiveBuffer); LOG(INFO) << "Load model from " << load_model_dir; LOG(INFO) << "Save optimized model to " << save_optimized_model_dir; } #ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK std::vector load_labels(std::string label_path) { FILE* fp = fopen(label_path.c_str(), "r"); if (fp == nullptr) { LOG(FATAL) << "load label file failed! " << label_path; } std::vector labels; while (!feof(fp)) { char str[1024]; fgets(str, 1024, fp); std::string str_s(str); if (str_s.length() > 0) { for (int i = 0; i < str_s.length(); i++) { if (str_s[i] == ' ') { std::string strr = str_s.substr(i, str_s.length() - i - 1); labels.push_back(strr); i = str_s.length(); } } } } fclose(fp); return labels; } void print_topk(const float* scores, const int size, const int topk, const std::vector labels) { std::vector> vec; vec.resize(size); for (int i = 0; i < size; i++) { vec[i] = std::make_pair(scores[i], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater>()); // print topk and score std::string name = FLAGS_out_txt + "_accu.txt"; FILE* fp = fopen(name.c_str(), "w"); fprintf(fp, "%d \n", topk); for (int i = 0; i < topk; i++) { float score = vec[i].first; int index = vec[i].second; fprintf(fp, "%d ", index); fprintf(fp, "%f \n", score); LOG(INFO) << i << ": " << index << " " << labels[index] << " " << score; } fclose(fp); } void Run(const std::vector>& input_shapes, const std::string& model_dir, const PowerMode power_mode, const int thread_num, const int repeat, const int warmup_times = 0) { lite_api::MobileConfig config; config.set_model_dir(model_dir); config.set_power_mode(power_mode); config.set_threads(thread_num); auto predictor = lite_api::CreatePaddlePredictor(config); bool flag_in = true; bool flag_out = true; if (FLAGS_in_txt == "") { flag_in = false; } if (FLAGS_out_txt == "") { flag_out = false; } printf("flag_in: %d, flag_out: %d \n", flag_in, flag_out); for (int j = 0; j < input_shapes.size(); ++j) { auto input_tensor = predictor->GetInput(j); input_tensor->Resize(input_shapes[j]); auto input_data = input_tensor->mutable_data(); int input_num = 1; for (int i = 0; i < input_shapes[j].size(); ++i) { input_num *= input_shapes[j][i]; } FILE* fp_r = nullptr; if (flag_in) { fp_r = fopen(FLAGS_in_txt.c_str(), "r"); } for (int i = 0; i < input_num; ++i) { if (flag_in) { fscanf(fp_r, "%f\n", &input_data[i]); } else { input_data[i] = 1.f; } } if (flag_in) { fclose(fp_r); } } for (int i = 0; i < warmup_times; ++i) { predictor->Run(); } Timer ti; for (int j = 0; j < repeat; ++j) { ti.Start(); predictor->Run(); float t = ti.Stop(); LOG(INFO) << "iter: " << j << ", time: " << t << " ms"; } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << model_dir << ", power_mode: " << static_cast(power_mode) << ", threads num " << thread_num << ", warmup: " << warmup_times << ", repeats: " << repeat << ", avg time: " << ti.LapTimes().Avg() << " ms" << ", min time: " << ti.LapTimes().Min() << " ms" << ", max time: " << ti.LapTimes().Max() << " ms."; auto output = predictor->GetOutput(0); auto out = output->data(); auto output_shape = output->shape(); int output_num = 1; for (int i = 0; i < output_shape.size(); ++i) { output_num *= output_shape[i]; } // classify printf("load_labels \n"); std::vector labels = load_labels(FLAGS_label_file); printf("print_topk \n"); print_topk(out, output_num, FLAGS_topk, labels); LOG(INFO) << "output_num: " << output_num; LOG(INFO) << "out " << out[0]; LOG(INFO) << "out " << out[1]; FILE* fp = nullptr; if (flag_out) { fp = fopen(FLAGS_out_txt.c_str(), "w"); } double sum1 = 0.f; for (int i = 0; i < output_num; ++i) { if (flag_out) { fprintf(fp, "%f\n", out[i]); } sum1 += out[i]; } if (flag_out) { fclose(fp); } printf("out mean: %f \n", sum1 / output_num); FILE* fp_w = fopen("time.txt", "a+"); if (!fp_w) { printf("open file failed \n"); return; } fprintf(fp_w, "model: %s, threads: %d, avg: %f ms, min: %f ms, max: %f ms \n", model_dir.c_str(), thread_num, ti.LapTimes().Avg(), ti.LapTimes().Min(), ti.LapTimes().Max()); fclose(fp_w); // please turn off memory_optimize_pass to use this feature. if (FLAGS_arg_name != "") { auto arg_tensor = predictor->GetTensor(FLAGS_arg_name); auto arg_shape = arg_tensor->shape(); int arg_num = 1; std::ostringstream os; os << "{"; for (int i = 0; i < arg_shape.size(); ++i) { arg_num *= arg_shape[i]; os << arg_shape[i] << ","; } os << "}"; float sum = 0.; std::ofstream out(FLAGS_arg_name + ".txt"); for (size_t i = 0; i < arg_num; ++i) { sum += arg_tensor->data()[i]; out << std::to_string(arg_tensor->data()[i]) << "\n"; } LOG(INFO) << FLAGS_arg_name << " shape is " << os.str() << ", mean value is " << sum * 1. / arg_num; } } #endif } // namespace lite_api } // namespace paddle int main(int argc, char** argv) { gflags::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir == "") { LOG(INFO) << "usage: " << "--model_dir /path/to/your/model"; exit(0); } std::string save_optimized_model_dir = ""; if (FLAGS_use_optimize_nb) { save_optimized_model_dir = FLAGS_model_dir; } else { save_optimized_model_dir = FLAGS_model_dir + "opt2"; } auto split_string = [](const std::string& str_in) -> std::vector { std::vector str_out; std::string tmp_str = str_in; while (!tmp_str.empty()) { size_t next_offset = tmp_str.find(":"); str_out.push_back(tmp_str.substr(0, next_offset)); if (next_offset == std::string::npos) { break; } else { tmp_str = tmp_str.substr(next_offset + 1); } } return str_out; }; auto get_shape = [](const std::string& str_shape) -> std::vector { std::vector shape; std::string tmp_str = str_shape; while (!tmp_str.empty()) { int dim = atoi(tmp_str.data()); shape.push_back(dim); size_t next_offset = tmp_str.find(","); if (next_offset == std::string::npos) { break; } else { tmp_str = tmp_str.substr(next_offset + 1); } } return shape; }; LOG(INFO) << "input shapes: " << FLAGS_input_shape; std::vector str_input_shapes = split_string(FLAGS_input_shape); std::vector> input_shapes; for (int i = 0; i < str_input_shapes.size(); ++i) { LOG(INFO) << "input shape: " << str_input_shapes[i]; input_shapes.push_back(get_shape(str_input_shapes[i])); } if (!FLAGS_use_optimize_nb) { // Output optimized model paddle::lite_api::OutputOptModel( FLAGS_model_dir, save_optimized_model_dir, input_shapes); } #ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK // Run inference using optimized model paddle::lite_api::Run( input_shapes, save_optimized_model_dir, static_cast(FLAGS_power_mode), FLAGS_threads, FLAGS_repeats, FLAGS_warmup); #endif return 0; }