// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { TEST(model, test) { #ifdef LITE_WITH_ARM DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_HIGH, FLAGS_threads); lite::Predictor predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kInt8)}}); auto precision = PRECISION(kFloat); if (FLAGS_int8) { precision = PRECISION(kInt8); } predictor.Build( FLAGS_model_dir, Place{TARGET(kARM), precision}, valid_places); int im_width = FLAGS_im_width; int im_height = FLAGS_im_height; auto* input_tensor = predictor.GetInput(0); auto in_dims = input_tensor->dims(); input_tensor->Resize( DDim(std::vector({1, 3, im_width, im_height}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); for (int i = 0; i < item_size; i++) { data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } auto* output_tensors = predictor.GetOutputs(); LOG(INFO) << "======output:========"; for (auto t : *output_tensors) { LOG(INFO) << t; } LOG(INFO) << "=====RUN_finished!!============= Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; #endif } } // namespace lite } // namespace paddle