// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/backends/opencl/target_wrapper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/kernels/opencl/test_helper.h" #define FP16_MAX_DIFF (5e-1) namespace paddle { namespace lite { float lrn_square(const float* din, int c, int offset, int channel, int height, int width, int local_size) { int pre_pad = (local_size - 1) / 2; float sum = 0.f; int start = c - pre_pad; int end = c + pre_pad; start = start < 0 ? 0 : start; end = end < channel - 1 ? end : channel - 1; for (int i = start; i <= end; i++) { sum += din[i * height * width] * din[i * height * width]; } return sum; } void lrn_ref(const float* din, const DDim& in_dims, float* output, int local_size, float k, float alpha, float beta, std::string norm_region) { int num = in_dims[0]; int channel = in_dims[1]; int height = in_dims[2]; int width = in_dims[3]; if (norm_region == "AcrossChannels") { for (int b = 0; b < num; b++) { const float* din_batch = din + b * channel * height * width; float* dout_batch = output + b * channel * height * width; int offset_num = b * channel * height * width; for (int c = 0; c < channel; c++) { for (int h = 0; h < height; ++h) { for (int w = 0; w < width; ++w) { int offset_within_channel = h * width + w; int dst_id = c * height * width + offset_within_channel; float square = lrn_square(din_batch, c, offset_within_channel, channel, height, width, local_size); dout_batch[dst_id] = din_batch[dst_id] * pow(k + alpha * square, -beta); } } } } } } // #define LRN_FP16_LOOP_TEST // #define LRN_FP16_PRINT_RESULT TEST(lrn_image2d, compute) { #ifdef LRN_FP16_LOOP_TEST for (int n = 1; n <= 100; n += 33) { for (auto c : {1, 3, 8, 23, 32}) { for (int h = 12; h <= 100; h += 13) { for (int w = 12; w <= 100; w += 25) { for (auto num : {3, 5, 9}) { for (auto k : {1.0, 1.5}) { for (auto alpha : {1e-4}) { for (auto beta : {0.5, 0.75}) { for (auto norm_region : {"AcrossChannels"}) { #else const int n = 1; const int c = 5; const int h = 2; const int w = 4; const int num = 5; const float k = 1.0; const float alpha = 1e-4; const float beta = 0.75; const std::string norm_region = "AcrossChannels"; #endif // GRID_FP16_LOOP_TEST LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c << " " << h << " " << w << " ========"; LOG(INFO) << "LRN parameters: "; LOG(INFO) << "num: " << num << ", k: " << k << ", alpha: " << alpha << ", beta: " << beta << ", norm_region: " << norm_region; auto kernels = KernelRegistry::Global().Create( "lrn", TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault)); ASSERT_FALSE(kernels.empty()); auto kernel = std::move(kernels.front()); LOG(INFO) << "get kernel:" << kernel->doc(); lite::Tensor x, out; operators::LrnParam param; param.X = &x; param.Out = &out; param.n = num; param.k = k; param.alpha = alpha; param.beta = beta; param.norm_region = norm_region; std::unique_ptr context(new KernelContext); context->As().InitOnce(); kernel->SetParam(param); std::unique_ptr lrn_context( new KernelContext); context->As().CopySharedTo( &(lrn_context->As())); kernel->SetContext(std::move(lrn_context)); const DDim in_dim = DDim(std::vector{n, c, h, w}); const DDim out_dim = DDim(std::vector{n, c, h, w}); x.Resize(in_dim); out.Resize(out_dim); std::default_random_engine engine; std::uniform_real_distribution dist(-1, 1); int sum = n * c * h * w; std::vector input_v(sum); for (auto& i : input_v) { i = dist(engine); } LOG(INFO) << "prepare input"; CLImageConverterDefault* default_converter = new CLImageConverterDefault(); DDim x_image_shape = default_converter->InitImageDimInfoWith(in_dim); LOG(INFO) << "x_image_shape = " << x_image_shape[0] << " " << x_image_shape[1]; std::vector x_image_data( x_image_shape.production() * 4); // 4 : RGBA default_converter->NCHWToImage( input_v.data(), x_image_data.data(), in_dim); auto* x_image = x.mutable_data( x_image_shape[0], x_image_shape[1], x_image_data.data()); // LOG(INFO) << "x_image:" << x_image; DDim out_image_shape = default_converter->InitImageDimInfoWith(out_dim); LOG(INFO) << "out_image_shape = " << out_image_shape[0] << " " << out_image_shape[1]; auto* out_image = out.mutable_data( out_image_shape[0], out_image_shape[1]); // LOG(INFO) << "out_image:" << out_image; kernel->Launch(); CLRuntime::Global()->command_queue().finish(); std::unique_ptr out_ref( new float[out_dim.production()]); lrn_ref(input_v.data(), in_dim, out_ref.get(), num, k, alpha, beta, norm_region); const size_t cl_image2d_row_pitch{0}; const size_t cl_image2d_slice_pitch{0}; half_t* out_image_data = new half_t[40000]; // out_image_shape.production() * // 4]; TargetWrapperCL::ImgcpySync(out_image_data, out_image, out_image_shape[0], out_image_shape[1], cl_image2d_row_pitch, cl_image2d_slice_pitch, IoDirection::DtoH); float* out_data = new float[40000]; // out_image_shape.production() * 4]; default_converter->ImageToNCHW( out_image_data, out_data, out_image_shape, out_dim); // result #ifdef LRN_FP16_PRINT_RESULT LOG(INFO) << "---- print kernel result (input -> output) ----"; for (int eidx = 0; eidx < in_dim.production(); ++eidx) { std::cout << input_v[eidx] << " -> " << out_data[eidx] << std::endl; } #endif // LRN_FP16_PRINT_RESULT for (int i = 0; i < out_dim.production(); i++) { auto abs_diff = abs(out_data[i] - out_ref[i]); auto relative_diff = COMPUTE_RELATIVE_DIFF(out_data[i], out_ref[i]); EXPECT_EQ((relative_diff <= FP16_MAX_DIFF) || (abs_diff <= FP16_MAX_DIFF), true); if ((relative_diff > FP16_MAX_DIFF) && (abs_diff > FP16_MAX_DIFF)) { LOG(ERROR) << "error idx: " << i << ", input_v[" << i << "]: " << input_v[i] << ", output_data[" << i << "]: " << out_data[i] << ", out_ref[" << i << "]:" << out_ref[i] << " abs_diff:" << abs_diff << " relative_diff:" << relative_diff << " FP16_MAX_DIFF:" << FP16_MAX_DIFF; } } #ifdef LRN_FP16_LOOP_TEST } // norm_region } // beta } // alpha } // k } // num } // w } // h } // c } // n #else // nothing to do. #endif } } // namespace lite } // namespace paddle USE_LITE_KERNEL(lrn, kOpenCL, kFP16, kImageDefault, ImageDefault);