// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/host/logical_compute.h" namespace paddle { namespace lite { namespace kernels { namespace host { #define LOGICAL_FUNCTOR(name, op) \ struct _##name##Functor { \ inline bool operator()(const bool& a, const bool& b) const { \ return a op b; \ } \ }; LOGICAL_FUNCTOR(LogicalAnd, &&); LOGICAL_FUNCTOR(LogicalOr, ||); struct _LogicalXorFunctor { inline bool operator()(const bool& a, const bool& b) const { return (a || b) && !(a && b); } }; struct _LogicalNotFunctor { inline bool operator()(const bool& a) const { return !a; } }; template // template void BinaryLogicalCompute::Run() { auto& param = this->Param(); const size_t count = param.X->numel(); bool* z = param.Out->template mutable_data(); const bool* x = param.X->template data(); const bool* y = param.Y->template data(); for (int i = 0; i < count; ++i) { z[i] = Functor()(x[i], y[i]); } } template void UnaryLogicalCompute::Run() { auto& param = this->Param(); const size_t count = param.X->numel(); bool* z = param.Out->template mutable_data(); const auto x = param.X->template data(); for (int i = 0; i < count; ++i) { z[i] = Functor()(x[i]); } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(logical_xor, kHost, kAny, kAny, paddle::lite::kernels::host::BinaryLogicalCompute< paddle::lite::kernels::host::_LogicalXorFunctor>, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(logical_and, kHost, kAny, kAny, paddle::lite::kernels::host::BinaryLogicalCompute< paddle::lite::kernels::host::_LogicalAndFunctor>, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(logical_or, kHost, kAny, kAny, paddle::lite::kernels::host::BinaryLogicalCompute< paddle::lite::kernels::host::_LogicalOrFunctor>, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(logical_not, kHost, kAny, kAny, paddle::lite::kernels::host::UnaryLogicalCompute< paddle::lite::kernels::host::_LogicalNotFunctor>, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny))}) .Finalize();