// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class ActivationComputeImageDefault : public KernelLite { public: using param_t = operators::ActivationParam; std::string doc() const override { return "Activation using cl::Image2D(ImageDefault/RGBA), kFP16"; } void PrepareForRun() override { act_param_ = param_.get_mutable(); int act_type = static_cast(act_param_->active_type); #ifndef LITE_SHUTDOWN_LOG VLOG(1) << "ActivationTypeToStr(act_param_->active_type):" << ActivationTypeToStr(act_param_->active_type); #endif switch (act_type) { case 1: kernel_func_name_ = "relu"; break; case 2: kernel_func_name_ = "relu6"; threshold_ = act_param_->Relu_clipped_coef; break; case 4: kernel_func_name_ = "leaky_relu"; scale_ = act_param_->Leaky_relu_alpha; break; case 5: kernel_func_name_ = "sigmoid"; break; case 6: kernel_func_name_ = "tanh_act"; break; case 7: kernel_func_name_ = "swish"; scale_ = act_param_->Swish_beta; break; case 8: kernel_func_name_ = "exp_act"; break; default: LOG(FATAL) << "This act type:" << act_type << " doesn't support."; return; } #ifndef LITE_SHUTDOWN_LOG VLOG(1) << "kernel_func_name_:" << kernel_func_name_; #endif auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "image/activation_kernel.cl", build_options_, time_stamp_); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; kernel_ = context.cl_context()->GetKernel(kernel_key.str()); } void ReInitWhenNeeded() override { act_param_ = param_.get_mutable(); auto x_dims = act_param_->X->dims(); if ((!first_epoch_for_reinit_ && x_dims != last_x_dims_) || first_epoch_for_reinit_) { last_x_dims_ = x_dims; first_epoch_for_reinit_ = false; // compute image shape paddle::lite::CLImageConverterDefault default_convertor; x_img_shape_ = default_convertor.InitImageDimInfoWith( act_param_->X->dims()); // w, h out_img_shape_ = default_convertor.InitImageDimInfoWith( act_param_->Out->dims()); // w, h // compute global work size GetGlobalWorkSize(); } } void GetGlobalWorkSize() { global_work_size_ = cl::NDRange{static_cast(x_img_shape_[0]), static_cast(x_img_shape_[1])}; } void Run() override { auto* x_img = act_param_->X->data(); auto* out_img = act_param_->Out->mutable_data( out_img_shape_[0], out_img_shape_[1]); auto kernel = kernel_; cl_int status; status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, threshold_); CL_CHECK_FATAL(status); status = kernel.setArg(3, scale_); CL_CHECK_FATAL(status); #ifndef LITE_SHUTDOWN_LOG const auto& x_dims = act_param_->X->dims(); const auto& y_dims = act_param_->Out->dims(); // useless: check dim only VLOG(4) << TargetToStr(act_param_->X->target()); VLOG(4) << TargetToStr(act_param_->Out->target()); VLOG(4) << "x_img_shape_(w,h):" << x_img_shape_[0] << " " << x_img_shape_[1]; VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " " << y_dims[1] << " " << y_dims[2] << " " << y_dims[3]; VLOG(4) << "threshold:" << threshold_; VLOG(4) << "scale:" << scale_; VLOG(4) << "kernel func name:" << kernel_func_name_; #endif auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size_, cl::NullRange, nullptr, nullptr); CL_CHECK_FATAL(status); } private: param_t* act_param_{nullptr}; DDim x_img_shape_ = DDim(std::vector( {static_cast(1), static_cast(1)})); DDim out_img_shape_ = DDim(std::vector( {static_cast(1), static_cast(1)})); DDim last_x_dims_; std::string kernel_func_name_{}; float threshold_{6.f}; float scale_{1.f}; cl::Kernel kernel_; bool first_epoch_for_reinit_{true}; cl::NDRange global_work_size_ = cl::NDRange{ static_cast(1), static_cast(1), static_cast(1)}; std::string build_options_{"-DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle // leakyRelu REGISTER_LITE_KERNEL( leaky_relu, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ActivationComputeImageDefault, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); // swish REGISTER_LITE_KERNEL( swish, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ActivationComputeImageDefault, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); // exp REGISTER_LITE_KERNEL( exp, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ActivationComputeImageDefault, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); // tanh REGISTER_LITE_KERNEL( tanh, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ActivationComputeImageDefault, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); // Relu REGISTER_LITE_KERNEL( relu, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ActivationComputeImageDefault, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); // Relu6 REGISTER_LITE_KERNEL( relu6, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ActivationComputeImageDefault, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); // Sigmoid REGISTER_LITE_KERNEL( sigmoid, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ActivationComputeImageDefault, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();