// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/paddle_place.h" #include "lite/backends/fpga/KD/float16.hpp" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/core/target_wrapper.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; template void convert_to_hwc( T* chw_data, T* hwc_data, int num, int channel, int height, int width) { int chw = channel * height * width; int wc = width * channel; int index = 0; for (int n = 0; n < num; n++) { for (int c = 0; c < channel; c++) { for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { hwc_data[n * chw + h * wc + w * channel + c] = chw_data[index]; index++; } } } } } template void hwc_to_chw( T* chw_data, T* hwc_data, int num, int channel, int height, int width) { int chw = channel * height * width; int wc = width * channel; int wh = width * height; int index = 0; for (int n = 0; n < num; n++) { for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { for (int c = 0; c < channel; c++) { chw_data[n * chw + c * wh + h * width + w] = hwc_data[index]; index++; } } } } } void TransHwcToChw(Tensor* dest, const Tensor* src) { if (src->ZynqTensor()->dataType() == zynqmp::FP32) { float* chw = dest->mutable_data(); float* hwc = const_cast(src->data()); int num = dest->dims()[0]; int channel = dest->dims()[1]; int height = 1; if (dest->dims().size() > 2) { height = dest->dims()[2]; } int width = 1; if (dest->dims().size() > 3) { width = dest->dims()[3]; } hwc_to_chw(chw, hwc, num, channel, height, width); } if (src->ZynqTensor()->dataType() == zynqmp::FP16) { float16* chw = dest->mutable_data(); float16* hwc = const_cast(src->data()); int num = dest->dims()[0]; int channel = dest->dims()[1]; int height = 1; if (dest->dims().size() > 2) { height = dest->dims()[2]; } int width = 1; if (dest->dims().size() > 3) { width = dest->dims()[3]; } hwc_to_chw(chw, hwc, num, channel, height, width); } } void TransChwToHwc(Tensor* dest, const Tensor* src) { std::cout << "chw to hwc \n"; exit(-1); } class TransHwcToChwCompute : public KernelLite { public: void Run() override { auto& param = Param(); param.x->ZynqTensor()->syncToCPU(); TransHwcToChw(param.y, param.x); param.y->ZynqTensor()->flush(); param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor()); auto out_lod = param.y->mutable_lod(); *out_lod = param.x->lod(); } std::unique_ptr GetTypeInferHandler() override { std::unique_ptr res(new type_infer_handler_t); *res = [](const std::map& inputs, const std::string& out) -> const Type* { CHECK(!inputs.empty()); auto* type = inputs.at("Input"); CHECK(type->layout() == DATALAYOUT(kNHWC)); auto out_place = type->place(); out_place.layout = DATALAYOUT(kNHWC); auto* out_type = Type::Get(type->id(), out_place.target, out_place.precision, out_place.layout, out_place.device); return out_type; }; return res; } std::string doc() const override { return "Trans Layout from NHWC to NCHW"; } }; /* * This kernel copies a tensor from FPGA to host space. */ class TransChwToHwcCompute : public KernelLite { public: void Run() override { auto& param = Param(); auto out_data = param.y->mutable_data(TARGET(kFPGA)); TransChwToHwc(param.y, param.x); } std::string doc() const override { return "Trans Layout from NHWC to NCHW"; } }; } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(layout, kFPGA, kAny, kNHWC, paddle::lite::kernels::fpga::TransHwcToChwCompute, hwc_to_chw_fpga_fp16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL(layout, kFPGA, kAny, kNHWC, paddle::lite::kernels::fpga::TransHwcToChwCompute, hwc_to_chw_arm_float) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL(layout, kFPGA, kAny, kNHWC, paddle::lite::kernels::fpga::TransChwToHwcCompute, chw_to_hwc_fpga_fp16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(layout_once, kFPGA, kAny, kNHWC, paddle::lite::kernels::fpga::TransHwcToChwCompute, hwc_to_chw_fpga_fp16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL(layout_once, kFPGA, kAny, kNHWC, paddle::lite::kernels::fpga::TransChwToHwcCompute, chw_to_hwc_fpga_fp16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize();