// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/lite_api_test_helper.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { #ifdef LITE_WITH_X86 TEST(CXXApi, test_lite_googlenet) { lite::Predictor predictor; std::vector valid_places({Place{TARGET(kX86), PRECISION(kFloat)}}); // LOG(INFO)<<"FLAGS_eval_googlenet_dir:"<Resize(DDim(std::vector({1, 3, 224, 224}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < input_tensor->dims().production(); i++) { data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; auto* out = predictor.GetOutput(0); std::vector results( {0.00034298553, 0.0008200012, 0.0005046297, 0.000839279, 0.00052616704, 0.0003447803, 0.0010877076, 0.00081762316, 0.0003941339, 0.0011430943, 0.0008892841, 0.00080191303, 0.0004442384, 0.000658702, 0.0026721435, 0.0013686896, 0.0005618166, 0.0006556497, 0.0006984528, 0.0014619455}); for (size_t i = 0; i < results.size(); ++i) { EXPECT_NEAR(out->data()[i * 51], results[i], 1e-5); } ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 1000); } #endif } // namespace lite } // namespace paddle