// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include // NOLINT #include #include #include #include #include #include #include #include "lite/core/op_registry.h" #include "lite/core/program.h" #include "lite/core/scope.h" #include "lite/core/types.h" #include "lite/model_parser/cpp/op_desc.h" namespace paddle { namespace lite { namespace arena { /* * Init data and prepare the op. */ class TestCase { public: explicit TestCase(const Place& place, const std::string& alias) : place_(place), scope_(new Scope), alias_(alias) { ctx_ = ContextScheduler::Global().NewContext(place_.target); } virtual ~TestCase(); void Prepare() { PrepareScopes(); PrepareData(); op_desc_.reset(new cpp::OpDesc); PrepareOpDesc(op_desc_.get()); PrepareOutputsForInstruction(); CreateInstruction(); PrepareInputsForInstruction(); } /// Run the target instruction, that is run the test operator. void RunInstruction() { instruction_->Run(); } KernelContext* context() { return ctx_.get(); } /// The baseline should be implemented, which acts similar to an operator, /// that is take several tensors as input and output several tensors as /// output. virtual void RunBaseline(Scope* scope) = 0; // checkout the precision of the two tensors with type T. b_tensor is baseline template bool CheckTensorPrecision(const Tensor* a_tensor, const Tensor* b_tensor, float abs_error); // checkout the precision of the two tensors. b_tensor is baseline bool CheckPrecision(const Tensor* a_tensor, const Tensor* b_tensor, float abs_error, PrecisionType precision_type); /// Check the precision of the output variables. It will compare the same /// tensor (or all tensors of the tensor_array) in two scopes, one of the /// instruction execution, and the other for the baseline. bool CheckPrecision(const std::string& var_name, float abs_error, PrecisionType precision_type); const cpp::OpDesc& op_desc() { return *op_desc_; } // Check whether the output tensor is consistent with the output definition in // kernel registry. void CheckKernelConsistWithDefinition() {} Scope& scope() { return *scope_; } Scope* baseline_scope() { return base_scope_; } Scope* inst_scope() { return inst_scope_; } protected: // Prepare inputs in scope() for Tester. virtual void PrepareData() = 0; /// Prepare a tensor in host. The tensors will be created in scope_. /// Need to specify the targets other than X86 or ARM. template void SetCommonTensor(const std::string& var_name, const DDim& ddim, const T* data, const LoD& lod = {}, bool is_persistable = false) { auto* tensor = scope_->NewTensor(var_name); tensor->Resize(ddim); auto* d = tensor->mutable_data(); memcpy(d, data, ddim.production() * sizeof(T)); // set lod if (!lod.empty()) *tensor->mutable_lod() = lod; // set persistable tensor->set_persistable(is_persistable); } /// Prepare a tensor_array in host. The tensors will be created in scope_. /// Need to specify the targets other than X86 or ARM. template void SetCommonTensorList(const std::string& var_name, const std::vector& array_tensor_dims, const std::vector>& datas, const std::vector& lods = {}) { CHECK_EQ(array_tensor_dims.size(), datas.size()); if (!lods.empty()) { CHECK_EQ(array_tensor_dims.size(), lods.size()); } auto* tensor_array = scope_->Var(var_name)->GetMutable>(); for (int i = 0; i < array_tensor_dims.size(); i++) { Tensor tmp; tmp.Resize(array_tensor_dims[i]); auto* tmp_data = tmp.mutable_data(); memcpy(tmp_data, datas[i].data(), array_tensor_dims[i].production() * sizeof(T)); if (!lods.empty()) { tmp.set_lod(lods[i]); } tensor_array->push_back(tmp); } } // Prepare for the operator. virtual void PrepareOpDesc(cpp::OpDesc* op_desc) = 0; public: const Instruction& instruction() { return *instruction_; } private: std::unique_ptr ctx_; void CreateInstruction(); void PrepareScopes() { inst_scope_ = &scope_->NewScope(); base_scope_ = &scope_->NewScope(); } // Check shape // TODO(Superjomn) Move this method to utils or DDim? bool ShapeEquals(const DDim& a, const DDim& b) { if (a.size() != b.size()) return false; for (int i = 0; i < a.size(); i++) { if (a[i] != b[i]) return false; } return true; } /// Copy the input tensors to target devices needed by the instruction. void PrepareInputsForInstruction(); // Create output tensors and variables. void PrepareOutputsForInstruction() { for (auto x : op_desc().output_vars()) { inst_scope_->NewTensor(x); base_scope_->NewTensor(x); } } private: Place place_; std::shared_ptr scope_; std::string alias_; // The workspace for the Instruction. Scope* inst_scope_{}; // The workspace for the baseline implementation. Scope* base_scope_{}; std::unique_ptr op_desc_; std::unique_ptr instruction_; }; class Arena { public: Arena(std::unique_ptr&& tester, const Place& place, float abs_error = 1e-5) : tester_(std::move(tester)), place_(place), abs_error_(abs_error) { tester_->Prepare(); } bool TestPrecision(const std::vector& exclude_outs = {}) { tester_->RunBaseline(tester_->baseline_scope()); tester_->RunInstruction(); bool success = true; for (auto& out : tester_->op_desc().OutputArgumentNames()) { for (auto& var : tester_->op_desc().Output(out)) { if (std::find(exclude_outs.begin(), exclude_outs.end(), var) != exclude_outs.end()) { continue; } success = success && CompareTensor(out, var); } } LOG(INFO) << "done"; return success; } void TestPerformance(int times = 100) { auto timer = std::chrono::high_resolution_clock::now(); for (int i = 0; i < times; i++) { tester_->RunInstruction(); } auto duration = std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - timer); timer = std::chrono::high_resolution_clock::now(); for (int i = 0; i < times; i++) { tester_->RunBaseline(tester_->baseline_scope()); } auto duration_basic = std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - timer); LOG(INFO) << "average lite duration: " << duration.count() << " ms"; LOG(INFO) << "average basic duration: " << duration_basic.count() << " ms"; LOG(INFO) << "speed up ratio: lite_speed / basic_speed: " << static_cast(duration_basic.count()) / duration.count(); } private: // input_name: X bool CompareTensor(const std::string& arg_name, const std::string& var_name) { // get tensor type. const Type* type = tester_->instruction().kernel()->GetOutputDeclType(arg_name); auto precision_type = type->precision(); return tester_->CheckPrecision(var_name, abs_error_, precision_type); } private: std::unique_ptr tester_; Place place_; float abs_error_; }; } // namespace arena } // namespace lite } // namespace paddle