// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" DEFINE_string(optimized_model, "", "optimized_model"); DEFINE_int32(N, 1, "input_batch"); DEFINE_int32(C, 3, "input_channel"); DEFINE_int32(H, 224, "input_height"); DEFINE_int32(W, 224, "input_width"); namespace paddle { namespace lite { #ifdef LITE_WITH_ARM void TestModel(const std::vector& valid_places, const std::string& model_dir = FLAGS_model_dir, bool save_model = false) { DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_NO_BIND, FLAGS_threads); lite::Predictor predictor; predictor.Build(model_dir, "", "", valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim( std::vector({FLAGS_N, FLAGS_C, FLAGS_H, FLAGS_W}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); for (int i = 0; i < item_size; i++) { data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } if (save_model) { LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model; predictor.SaveModel(FLAGS_optimized_model); } LOG(INFO) << "input shape(NCHW):" << FLAGS_N << " " << FLAGS_C << " " << FLAGS_H << " " << FLAGS_W; LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> ref; // i = 1 ref.emplace_back(std::vector( {0.00017082224, 5.699624e-05, 0.000260885, 0.00016412718, 0.00034818667, 0.00015230637, 0.00032959113, 0.0014772735, 0.0009059976, 9.5378724e-05, 5.386537e-05, 0.0006427285, 0.0070957416, 0.0016094646, 0.0018807327, 0.00010506048, 6.823785e-05, 0.00012269315, 0.0007806194, 0.00022354358})); auto* out = predictor.GetOutput(0); const auto* pdata = out->data(); int step = 50; #ifdef LITE_WITH_NPU ASSERT_EQ(out->dims().production(), 1000); double eps = 0.1; for (int i = 0; i < ref.size(); ++i) { for (int j = 0; j < ref[i].size(); ++j) { auto result = pdata[j * step + (out->dims()[1] * i)]; auto diff = std::fabs((result - ref[i][j]) / ref[i][j]); VLOG(3) << diff; EXPECT_LT(diff, eps); } } #else ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 1000); for (int i = 0; i < ref.size(); ++i) { for (int j = 0; j < ref[i].size(); ++j) { EXPECT_NEAR(pdata[j * step + (out->dims()[1] * i)], ref[i][j], 1e-6); } } #endif } #ifdef LITE_WITH_NPU TEST(MobileNetV2, test_npu) { std::vector valid_places({ Place{TARGET(kARM), PRECISION(kFloat)}, Place{TARGET(kNPU), PRECISION(kFloat)}, }); TestModel(valid_places, FLAGS_model_dir, true /* save_model*/); TestModel(valid_places, FLAGS_optimized_model, false /* save model */); } #endif // LITE_WITH_NPU TEST(MobileNetV2, test_arm) { std::vector valid_places({ Place{TARGET(kARM), PRECISION(kFloat)}, }); TestModel(valid_places); } #ifdef LITE_WITH_OPENCL TEST(MobileNetV2, test_opencl) { std::vector valid_places({ Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault)}, Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)}, Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kImageDefault)}, Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW)}, TARGET(kARM), // enable kARM CPU kernel when no opencl kernel }); TestModel(valid_places); } #endif // LITE_WITH_OPENCL #endif // LITE_WITH_ARM } // namespace lite } // namespace paddle