// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "lite/core/tensor.h" #include "lite/utils/cp_logging.h" #ifdef LITE_WITH_MLU #include "lite/backends/mlu/mlu_utils.h" #endif namespace paddle { namespace lite { #if ((defined LITE_WITH_ARM) || (defined LITE_WITH_MLU)) typedef enum { kAPPLE = 0, kA53 = 53, kA55 = 55, kA57 = 57, kA72 = 72, kA73 = 73, kA75 = 75, kA76 = 76, kARMArch_UNKOWN = -1 } ARMArch; class DeviceInfo { public: static DeviceInfo& Global() { static auto* x = new DeviceInfo; return *x; } static int Init() { static int ret = Global().Setup(); return ret; } int Setup(); void SetRunMode(lite_api::PowerMode mode, int thread_num); // #ifdef LITE_WITH_MLU // void SetMLURunMode(lite_api::MLUCoreVersion core_version, // int core_number, // bool use_first_conv, // const std::vector& mean_vec, // const std::vector& std_vec, // DataLayoutType input_layout); // cnmlCoreVersion_t MLUCoreVersion(); // int MLUCoreNumber(); // bool UseFirstConv(); // const std::vector& MeanVec() const; // const std::vector& StdVec() const; // DataLayoutType InputLayout() const; // #endif void SetCache(int l1size, int l2size, int l3size); void SetArch(ARMArch arch) { arch_ = arch; } lite_api::PowerMode mode() const { return mode_; } int threads() const { return active_ids_.size(); } ARMArch arch() const { return arch_; } int l1_cache_size() const { return L1_cache_[active_ids_[0]]; } int l2_cache_size() const { return L2_cache_[active_ids_[0]]; } int l3_cache_size() const { return L3_cache_[active_ids_[0]]; } int llc_size() const { auto size = L3_cache_[active_ids_[0]] > 0 ? L3_cache_[active_ids_[0]] : L2_cache_[active_ids_[0]]; return size > 0 ? size : 512 * 1024; } bool has_dot() const { return dot_[active_ids_[0]]; } bool has_fp16() const { return fp16_[active_ids_[0]]; } template T* workspace_data() { return reinterpret_cast(workspace_.mutable_data()); } bool ExtendWorkspace(size_t size); private: int core_num_; std::vector max_freqs_; std::vector min_freqs_; std::string dev_name_; std::vector L1_cache_; std::vector L2_cache_; std::vector L3_cache_; std::vector core_ids_; std::vector big_core_ids_; std::vector little_core_ids_; std::vector cluster_ids_; std::vector archs_; std::vector fp32_; std::vector fp16_; std::vector dot_; // LITE_POWER_HIGH stands for using big cores, // LITE_POWER_LOW stands for using small core, // LITE_POWER_FULL stands for using all cores static thread_local lite_api::PowerMode mode_; static thread_local ARMArch arch_; static thread_local int mem_size_; static thread_local std::vector active_ids_; static thread_local TensorLite workspace_; static thread_local int64_t count_; // #ifdef LITE_WITH_MLU // static thread_local cnmlCoreVersion_t mlu_core_version_; // static thread_local int mlu_core_number_; // static thread_local bool use_first_conv_; // static thread_local std::vector mean_vec_; // static thread_local std::vector std_vec_; // static thread_local DataLayoutType input_layout_; // #endif void SetDotInfo(int argc, ...); void SetFP16Info(int argc, ...); void SetFP32Info(int argc, ...); void SetCacheInfo(int cache_id, int argc, ...); void SetArchInfo(int argc, ...); bool SetCPUInfoByName(); void SetCPUInfoByProb(); void RequestPowerFullMode(int thread_num); void RequestPowerHighMode(int thread_num); void RequestPowerLowMode(int thread_num); void RequestPowerNoBindMode(int thread_num); void RequestPowerRandHighMode(int shift_num, int thread_num); void RequestPowerRandLowMode(int shift_num, int thread_num); DeviceInfo() = default; }; #endif // LITE_WITH_ARM template class Device; template class Env { public: typedef TargetWrapper API; typedef std::vector> Devs; static Devs& Global() { static Devs* devs = new Devs(); return *devs; } static void Init(int max_stream = 4) { #ifdef LITE_WITH_MLU CNRT_CALL(cnrtInit(0)); #endif Devs& devs = Global(); if (devs.size() > 0) { return; } int count = 0; // Get device count count = API::num_devices(); if (count == 0) { CHECK(false) << "No device found!"; } else { LOG(INFO) << "Found " << count << " device(s)"; } // create all device for (int i = 0; i < count; i++) { auto dev = Device(i, max_stream); dev.Init(); devs.push_back(dev); } LOG(INFO) << "dev size = " << devs.size(); } }; #ifdef LITE_WITH_MLU void SetMluDevice(int device_id); template <> class Device { public: Device(int dev_id, int max_queue = 1) : idx_(dev_id), max_queue_(max_queue) {} void Init(); int id() { return idx_; } int max_queue() { return max_queue_; } void SetId(int idx) { idx_ = idx; } std::string name() { return "MLU"; } int core_num() { return 16; } float max_memory() { return 16 * 1024; } std::vector io_queues() { return io_queue_; } std::vector exec_queues() { return exec_queue_; } private: void CreateQueue(); void GetInfo(); private: int idx_{0}; int max_queue_; std::string device_name_; float max_memory_; std::vector io_queue_; std::vector exec_queue_; }; template class Env; #endif // LITE_WITH_MLU #ifdef LITE_WITH_CUDA template <> class Device { public: Device(int dev_id, int max_stream = 1) : idx_(dev_id), max_stream_(max_stream) {} void Init(); int id() { return idx_; } int max_stream() { return max_stream_; } void SetId(int idx) { idx_ = idx; } std::string name() { return device_prop_.name; } int core_num() { return device_prop_.multiProcessorCount; } float max_memory() { return device_prop_.totalGlobalMem / 1048576.; } std::vector exec_streams() { return exec_stream_; } std::vector io_streams() { return io_stream_; } int sm_version() { return sm_version_; } bool has_fp16() { return has_fp16_; } bool has_int8() { return has_fp16_; } bool has_hmma() { return has_fp16_; } bool has_imma() { return has_fp16_; } int runtime_version() { return runtime_version_; } private: void CreateStream(); void GetInfo(); private: int idx_{0}; int max_stream_; cudaDeviceProp device_prop_; std::string device_name_; float max_memory_; int sm_version_; bool has_fp16_; bool has_int8_; bool has_hmma_; bool has_imma_; int runtime_version_; std::vector exec_stream_; std::vector io_stream_; }; template class Env; #endif } // namespace lite } // namespace paddle