// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/conv_compute.h" #include #include "lite/core/op_registry.h" #include "lite/core/type_system.h" #include "lite/kernels/arm/conv_depthwise.h" #include "lite/kernels/arm/conv_direct.h" #include "lite/kernels/arm/conv_gemmlike.h" #include "lite/kernels/arm/conv_winograd.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template <> void ConvCompute::PrepareForRun() { auto& param = this->Param(); auto w_dims = param.filter->dims(); auto& ctx = this->ctx_->template As(); auto paddings = *param.paddings; auto dilations = *param.dilations; int ic = w_dims[1] * param.groups; int oc = w_dims[0]; int kh = w_dims[2]; // oihw int kw = w_dims[3]; int pad = paddings[0]; int stride = param.strides[0]; int threads = ctx.threads(); bool pads_equal = ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3])); int chin = param.x->dims()[1]; int hin = param.x->dims()[2]; int win = param.x->dims()[3]; int chout = param.output->dims()[1]; int hout = param.output->dims()[2]; int wout = param.output->dims()[3]; bool pads_all_equal = (pads_equal && paddings[0] == paddings[2]); bool kps_equal = (param.strides[0] == param.strides[1]) && (kw == kh); bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1); bool flag_dw_3x3 = (kw == 3 && kh == 3 && (stride == 1 || stride == 2)); bool flag_dw_5x5 = pads_all_equal && ((kw == 5 && stride == 1) || (kw == 5 && stride == 2 && pad == 2)); bool flag_dw = flag_dw_3x3 || flag_dw_5x5; /// select conv impl if (param.groups == ic && ic == oc && kps_equal && pads_equal && no_dilation && flag_dw) { /// dw conv impl impl_ = new DepthwiseConv; VLOG(3) << "invoking dw conv"; } else if (param.groups == 1 && kw == 3 && stride == 1 && kps_equal && no_dilation) { bool use_winograd = (threads == 1 && oc >= 4 && ic >= 4 && hout >= 6 && wout >= 6 && pads_equal) || (oc >= 32 && ic >= 32 && hout >= 16 && wout >= 16 && pads_equal); if (use_winograd) { /// winograd conv impl impl_ = new WinogradConv; VLOG(3) << "invoking winograd conv"; } else { /// direct conv impl impl_ = new DirectConv; VLOG(3) << "invoking direct conv"; } } else if (param.groups == 1 && kw == 3 && stride == 2 && chin * chout < 4 * hin * win && kps_equal && no_dilation) { /// direct conv impl impl_ = new DirectConv; VLOG(3) << "invoking direct conv"; } else { impl_ = new GemmLikeConv; VLOG(3) << "invoking gemm like conv"; } impl_->SetContext(std::move(this->ctx_)); impl_->SetParam(param); impl_->PrepareForRun(); is_first_epoch_ = false; } template <> void ConvCompute::PrepareForRun() { auto& param = this->Param(); auto w_dims = param.filter->dims(); auto& ctx = this->ctx_->template As(); auto paddings = *param.paddings; auto dilations = *param.dilations; bool pads_equal = ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3])); int ic = param.groups * w_dims[1]; int oc = w_dims[0]; int kh = w_dims[2]; // oihw int kw = w_dims[3]; int ph = paddings[0]; int pw = paddings[2]; int sh = param.strides[1]; int sw = param.strides[0]; bool pads_all_equal = (pads_equal && paddings[0] == paddings[2]); bool kps_equal = (pw == ph) && (sh == sw) && (kw == kh); bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1); bool flag_dw_3x3 = (kw == 3 && kh == 3 && (sw == 1 || sw == 2)); bool flag_dw_5x5 = pads_all_equal && ((kw == 5 && sw == 1) || (kw == 5 && sw == 2 && pw == 2)); bool flag_dw = flag_dw_3x3 || flag_dw_5x5; if (param.groups == ic && ic == oc && kps_equal && pads_equal && no_dilation && flag_dw) { impl_ = new DepthwiseConv; VLOG(3) << "Run DepthwiseConv Int8"; } else if (param.groups == 1 && kw == 3 && (sw == 1 || sw == 2) && kps_equal && no_dilation) { impl_ = new DirectConv; VLOG(3) << "Run DirectConv Int8"; } else { impl_ = new GemmLikeConv; VLOG(3) << "Run GemmLikeConvInt8"; } impl_->SetContext(std::move(this->ctx_)); impl_->SetParam(param); impl_->PrepareForRun(); is_first_epoch_ = false; } template <> void ConvCompute::PrepareForRun() { auto& param = this->Param(); auto w_dims = param.filter->dims(); auto& ctx = this->ctx_->template As(); auto paddings = *param.paddings; auto dilations = *param.dilations; bool pads_equal = ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3])); int ic = w_dims[1] * param.groups; int oc = w_dims[0]; int kh = w_dims[2]; // oihw int kw = w_dims[3]; int ph = paddings[0]; int pw = paddings[2]; int sh = param.strides[1]; int sw = param.strides[0]; bool pads_all_equal = (pads_equal && paddings[0] == paddings[2]); bool kps_equal = (pw == ph) && (sh == sw) && (kw == kh); bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1); bool flag_dw_3x3 = (kw == 3 && kh == 3 && (sw == 1 || sw == 2)); bool flag_dw_5x5 = pads_all_equal && ((kw == 5 && sw == 1) || (kw == 5 && sw == 2 && pw == 2)); bool flag_dw = flag_dw_3x3 || flag_dw_5x5; if (param.groups == ic && ic == oc && kps_equal && pads_equal && no_dilation && flag_dw) { impl_ = new DepthwiseConv; VLOG(3) << "Run DepthwiseConv Int8"; } else if (param.groups == 1 && kw == 3 && (sw == 1 || sw == 2) && kps_equal && no_dilation) { impl_ = new DirectConv; VLOG(3) << "Run DirectConv Int8"; } else { impl_ = new GemmLikeConv; VLOG(3) << "Run GemmLikeConvInt8"; } impl_->SetContext(std::move(this->ctx_)); impl_->SetParam(param); impl_->PrepareForRun(); is_first_epoch_ = false; } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle typedef paddle::lite::kernels::arm::ConvCompute ConvFp32; typedef paddle::lite::kernels::arm::ConvCompute ConvInt8_Fp32; typedef paddle::lite::kernels::arm::ConvCompute ConvInt8_Int8; REGISTER_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW, ConvFp32, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize(); REGISTER_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, ConvFp32, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize(); REGISTER_LITE_KERNEL(conv2d, kARM, kInt8, kNCHW, ConvInt8_Int8, int8_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .Finalize(); REGISTER_LITE_KERNEL(conv2d, kARM, kInt8, kNCHW, ConvInt8_Fp32, fp32_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))}) .Finalize(); REGISTER_LITE_KERNEL( depthwise_conv2d, kARM, kInt8, kNCHW, ConvInt8_Int8, int8_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .Finalize(); REGISTER_LITE_KERNEL( depthwise_conv2d, kARM, kInt8, kNCHW, ConvInt8_Fp32, fp32_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))}) .Finalize();