/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "lite/backends/opencl/cl_context.h" #include #include #include #include "lite/backends/opencl/cl_runtime.h" #include "lite/backends/opencl/cl_utility.h" #include "lite/utils/cp_logging.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { cl::CommandQueue &CLContext::GetCommandQueue() { return CLRuntime::Global()->command_queue(); } cl::Context &CLContext::GetContext() { return CLRuntime::Global()->context(); } cl::Program &CLContext::GetProgram(const std::string &file_name, const std::string &options) { STL::stringstream program_key_ss; program_key_ss << file_name << options; std::string program_key = program_key_ss.str(); auto it = programs_.find(program_key); if (it != programs_.end()) { #ifdef LITE_WITH_LOG VLOG(3) << " --- program -> " << program_key << " has been built --- "; #endif return *(it->second); } auto program = CLRuntime::Global()->CreateProgram(GetContext(), file_name); #ifdef LITE_WITH_LOG VLOG(3) << " --- begin build program -> " << program_key << " --- "; #endif CLRuntime::Global()->BuildProgram(program.get(), options); #ifdef LITE_WITH_LOG VLOG(3) << " --- end build program -> " << program_key << " --- "; #endif programs_[program_key] = std::move(program); return *(programs_[program_key]); } void CLContext::AddKernel(const std::string &kernel_name, const std::string &file_name, const std::string &options, const std::string &time_stamp) { cl_int status{CL_SUCCESS}; #ifdef LITE_WITH_LOG VLOG(3) << " --- to get program " << file_name << " --- "; #endif auto program = GetProgram(file_name, options); #ifdef LITE_WITH_LOG VLOG(3) << " --- end get program --- "; VLOG(3) << " --- to create kernel: " << kernel_name << " --- "; #endif std::shared_ptr kernel( new cl::Kernel(program, kernel_name.c_str(), &status)); CL_CHECK_FATAL(status); #ifdef LITE_WITH_LOG VLOG(3) << " --- end create kernel --- "; #endif kernels_.emplace_back(std::move(kernel)); STL::stringstream kernel_key; kernel_key << kernel_name << options << time_stamp; kernel_offset_[kernel_key.str()] = kernels_.size() - 1; } cl::Kernel &CLContext::GetKernel(const int index) { #ifdef LITE_WITH_LOG VLOG(3) << " --- kernel count: " << kernels_.size() << " --- "; #endif CHECK(static_cast(index) < kernels_.size()) << "The index must be less than the size of kernels."; CHECK(kernels_[index] != nullptr) << "The target kernel pointer cannot be null."; return *(kernels_[index]); } cl::Kernel &CLContext::GetKernel(const std::string &name) { auto it = kernel_offset_.find(name); CHECK(it != kernel_offset_.end()) << "Cannot find the kernel function: " << name; return GetKernel(it->second); } cl::NDRange CLContext::DefaultWorkSize(const CLImage &image) { // n c h w auto image_dim = image.tensor_dims(); if (image_dim.size() == 4) { auto n = image_dim[0]; auto h = image_dim[2]; auto w = image_dim[3]; auto image_width = image.ImageWidth(); auto work_size_0 = image_width / w; auto work_size_1 = w; auto work_size_2 = n * h; return cl::NDRange{static_cast(work_size_0), static_cast(work_size_1), static_cast(work_size_2)}; } else if (image_dim.size() == 2) { return cl::NDRange{static_cast(1), static_cast(image.ImageWidth()), static_cast(image.ImageHeight())}; } else if (image_dim.size() == 1) { return cl::NDRange{static_cast(1), static_cast(image.ImageWidth()), static_cast(1)}; } else if (image_dim.size() == 3) { auto c = image_dim[0]; auto h = image_dim[1]; auto w = image_dim[2]; return cl::NDRange{static_cast((c + 3) / 4), static_cast(w), static_cast(h)}; } else { LOG(FATAL) << "Not support this dimension, need to be implemented!"; return cl::NDRange{}; } } cl::NDRange CLContext::LocalWorkSizeTune(cl::NDRange global_work_size, size_t max_work_size, int divisor) { int preferred_lws = 0; #if 1 auto gws0 = global_work_size[0]; auto gws1 = global_work_size[1]; auto gws2 = global_work_size[2]; #else auto gws2 = global_work_size[0]; auto gws1 = global_work_size[1]; auto gws0 = global_work_size[2]; #endif if (divisor > 1) { max_work_size /= divisor; } if (preferred_lws > 0 && preferred_lws <= max_work_size) { max_work_size = preferred_lws; } while (gws1 > max_work_size && max_work_size > 0) { gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1; } while (gws2 * gws1 > max_work_size && max_work_size > 0) { gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1; } while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) { gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1; } #if 1 return cl::NDRange{static_cast(gws0), static_cast(gws1), static_cast(gws2)}; #else return cl::NDRange{static_cast(gws2), static_cast(gws1), static_cast(gws0)}; #endif } cl::NDRange CLContext::LocalWorkSizeTuneReverse(cl::NDRange global_work_size, size_t max_work_size, int divisor) { int preferred_lws = 0; #if 0 auto gws0 = global_work_size[0]; auto gws1 = global_work_size[1]; auto gws2 = global_work_size[2]; #else auto gws2 = global_work_size[0]; auto gws1 = global_work_size[1]; auto gws0 = global_work_size[2]; #endif if (divisor > 1) { max_work_size /= divisor; } if (preferred_lws > 0 && preferred_lws <= max_work_size) { max_work_size = preferred_lws; } while (gws1 > max_work_size && max_work_size > 0) { gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1; } while (gws2 * gws1 > max_work_size && max_work_size > 0) { gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1; } while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) { gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1; } #if 0 return cl::NDRange{static_cast(gws0), static_cast(gws1), static_cast(gws2)}; #else return cl::NDRange{static_cast(gws2), static_cast(gws1), static_cast(gws0)}; #endif } bool CLContext::IsArmMali() { return CLRuntime::Global()->GetGpuType() == GpuType::ARM_MALI; } cl::NDRange CLContext::LocalWorkSize(cl::NDRange global_work_size, size_t max_work_size) { int preferred_lws = 0; int divisor = 2; auto gws0 = global_work_size[0]; auto gws1 = global_work_size[1]; auto gws2 = global_work_size[2]; if (divisor > 1) { max_work_size /= divisor; } if (preferred_lws > 0 && preferred_lws <= max_work_size) { max_work_size = preferred_lws; } while (gws1 > max_work_size && max_work_size > 0) { gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1; } while (gws2 * gws1 > max_work_size && max_work_size > 0) { gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1; } while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) { gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1; } return cl::NDRange{static_cast(gws0), static_cast(gws1), static_cast(gws2)}; } } // namespace lite } // namespace paddle