// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "lite/core/op_registry.h" #include "lite/kernels/x86/transpose_compute.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { // transpose TEST(transpose_x86, retrive_op) { auto transpose = KernelRegistry::Global().Create("transpose"); ASSERT_FALSE(transpose.empty()); ASSERT_TRUE(transpose.front()); } TEST(transpose_x86, init) { lite::kernels::x86::TransposeCompute transpose; ASSERT_EQ(transpose.precision(), PRECISION(kFloat)); ASSERT_EQ(transpose.target(), TARGET(kX86)); } TEST(transpose_x86, run_test) { lite::Tensor x; lite::Tensor out; std::vector x_shape({3, 4, 5}); x.Resize(lite::DDim(x_shape)); std::vector out_shape({3, 5, 4}); out.Resize(lite::DDim(out_shape)); auto x_data = x.mutable_data(); auto out_data = out.mutable_data(); for (int64_t i = 0; i < x.dims().production(); ++i) { x_data[i] = static_cast(i); } // TransposeCompute transpose; TransposeCompute transpose; operators::TransposeParam param; param.x = &x; param.output = &out; std::vector axis({0, 2, 1}); param.axis = axis; std::unique_ptr ctx(new KernelContext); ctx->As(); transpose.SetContext(std::move(ctx)); transpose.SetParam(param); transpose.Run(); for (int j = 0; j < out.dims().production(); ++j) { // EXPECT_NEAR(out_data[j], x_data[j], 1e-5); LOG(INFO) << out_data[j]; } } // transpose2 TEST(transpose2_x86, retrive_op) { auto transpose2 = KernelRegistry::Global().Create("transpose2"); ASSERT_FALSE(transpose2.empty()); ASSERT_TRUE(transpose2.front()); } TEST(transpose2_x86, init) { lite::kernels::x86::Transpose2Compute transpose2; ASSERT_EQ(transpose2.precision(), PRECISION(kFloat)); ASSERT_EQ(transpose2.target(), TARGET(kX86)); } TEST(transpose2_x86, run_test) { lite::Tensor x; lite::Tensor xshape; lite::Tensor out; std::vector x_shape({3, 4, 5}); x.Resize(lite::DDim(x_shape)); std::vector out_shape({3, 5, 4}); out.Resize(lite::DDim(out_shape)); std::vector xshape_shape({3, 4, 5}); xshape.Resize(lite::DDim(xshape_shape)); auto x_data = x.mutable_data(); auto out_data = out.mutable_data(); auto xshape_data = xshape.mutable_data(); for (int64_t i = 0; i < x.dims().production(); ++i) { x_data[i] = static_cast(i); xshape_data[i] = static_cast(i); } // Transpose2Compute transpose2; Transpose2Compute transpose2; operators::TransposeParam param; param.x = &x; param.output = &out; param.xshape = &xshape; std::vector axis({0, 2, 1}); param.axis = axis; std::unique_ptr ctx(new KernelContext); ctx->As(); transpose2.SetContext(std::move(ctx)); transpose2.SetParam(param); transpose2.Run(); for (int j = 0; j < out.dims().production(); ++j) { LOG(INFO) << out_data[j]; } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(transpose, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(transpose2, kX86, kFloat, kNCHW, def);