// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/sequence_expand_as_compute.h" #include namespace paddle { namespace lite { namespace kernels { namespace arm { void SequenceExpandAsCompute::Run() { auto& param = Param(); auto* x = param.x; auto* y = param.y; auto* out = param.out; auto x_lod = x->lod(); auto y_lod = y->lod(); auto dims = x->dims(); auto out_data = out->mutable_data(); auto x_data = x->data(); int seq_size = x->numel() / dims[0]; std::vector out_lod; out_lod.push_back(0); int sum = 0; for (int i = 0; i < y_lod[0].size(); i++) { int repeat_num = y_lod[0][i]; if (repeat_num == 0) { continue; } else { for (int j = 0; j < repeat_num; j++) { memcpy(out_data, x_data, sizeof(float) * seq_size); out_data += seq_size; } x_data += seq_size; } sum += repeat_num; out_lod.push_back(sum); } std::vector> lod; lod.push_back(out_lod); out->set_lod(lod); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(sequence_expand_as, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::SequenceExpandAsCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();