/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "common/log.h" #include "common/type_define.h" #include "framework/lod_tensor.h" #include "framework/scope.h" #include "framework/tensor.h" #include "framework/variable.h" namespace paddle_mobile { namespace operators { using framework::Attribute; using framework::AttributeMap; using framework::LoDTensor; using framework::Scope; using framework::Tensor; using std::string; using std::vector; class OpParam : PaddleMobileObject { protected: template static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Input", inputs, scope); } template static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("X", inputs, scope); } template static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Y", inputs, scope); } template static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Bias", inputs, scope); } template static T *InputVarianceFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Variance", inputs, scope); } template static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Mean", inputs, scope); } template static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Scale", inputs, scope); } template static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Image", inputs, scope); } template static T *InputPriorBoxFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("PriorBox", inputs, scope); } template static T *InputPriorBoxVarFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("PriorBoxVar", inputs, scope); } // LoDTensor but now use Tensor template static T *InputTargetBoxFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("TargetBox", inputs, scope); } template static vector InputMultiFrom(const VariableNameMap &inputs, const Scope &scope) { return GetMultiVarValue("X", inputs, scope); } template static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Output", outputs, scope); } template static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Out", outputs, scope); } template static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Y", outputs, scope); } template static T *OutputBoxesFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Boxes", outputs, scope); } template static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("OutputBox", outputs, scope); } template static T *OutputVariancesFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("Variances", outputs, scope); } template static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) { return GetVarValue("MidOut", outputs, scope); } template static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) { return GetVarValue("Filter", inputs, scope); } template static const T GetAttr(const string &key, const AttributeMap &map) { return ((Attribute)map.at(key)).Get(); } template static T *GetVarValue(const string &key, const VariableNameMap &var_map, const Scope &scope) { auto var_vec = var_map.at(key); if (!var_vec.empty()) { // std::cout << " get var value -- " << var_vec[0] << // std::endl; auto var = scope.FindVar(var_vec[0]); return var->GetMutable(); } else { return nullptr; } } template static vector GetMultiVarValue(const string &key, const VariableNameMap &var_map, const Scope &scope) { auto var_vecs = var_map.at(key); assert(var_vecs.size() > 1); vector var_res; for (auto &var_vec : var_vecs) { auto var = scope.FindVar(var_vec); var_res.push_back(var->GetMutable()); } return var_res; } }; class ConvParam : OpParam { public: ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { filter_ = FilterFrom(inputs, scope); input_ = InputFrom(inputs, scope); output_ = OutputFrom(outputs, scope); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); dilations_ = GetAttr>("dilations", attrs); groups = GetAttr("groups", attrs); } const Tensor *Input() const { return input_; } const LoDTensor *Filter() const { return filter_; } Tensor *Output() const { return output_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } const vector &Dilations() const { return dilations_; } const int &Groups() const { return groups; } private: Tensor *input_; Tensor *output_; LoDTensor *filter_; vector strides_; vector paddings_; vector dilations_; int groups; }; Print &operator<<(Print &printer, const ConvParam &conv_param); class ElementwiseAddParam : OpParam { public: ElementwiseAddParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_y_ = InputYFrom(inputs, scope); out_ = OutFrom(outputs, scope); axis_ = GetAttr("axis", attrs); } const Tensor *InputX() const { return input_x_; } const Tensor *InputY() const { return input_y_; } Tensor *Out() const { return out_; } const int &Axis() const { return axis_; } private: Tensor *input_x_; Tensor *input_y_; Tensor *out_; int axis_; }; class MulParam : OpParam { public: MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_x_ = InputXFrom(inputs, scope); input_y_ = InputYFrom(inputs, scope); out_ = OutFrom(outputs, scope); x_num_col_dims_ = GetAttr("x_num_col_dims", attrs); y_num_col_dims_ = GetAttr("y_num_col_dims", attrs); } const Tensor *InputX() const { return input_x_; } const Tensor *InputY() const { return input_y_; } Tensor *Out() const { return out_; } const int &XNumColDims() const { return x_num_col_dims_; } const int &YNumColDims() const { return y_num_col_dims_; } private: Tensor *input_x_; Tensor *input_y_; Tensor *out_; int x_num_col_dims_; int y_num_col_dims_; }; class ConcatParam : public OpParam { public: ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { inputs_ = InputMultiFrom(inputs, scope); out_ = OutFrom(outputs, scope); axis_ = GetAttr("axis", attrs); } vector Inputs() const { return inputs_; } Tensor *Out() const { return out_; } const int &Axis() const { return axis_; } private: vector inputs_; Tensor *out_; int axis_; }; class LrnParam : public OpParam { public: LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); mid_out_ = MidOutFrom(outputs, scope); n_ = GetAttr("n", attrs); alpha_ = GetAttr("alpha", attrs); beta_ = GetAttr("beta", attrs); k_ = GetAttr("k", attrs); data_format_ = GetAttr("data_format", attrs); } const Tensor *InputX() const { return input_x_; } Tensor *Out() const { return out_; } Tensor *MidOut() const { return mid_out_; } const int &N() const { return n_; } const float &Alpha() const { return alpha_; } const float &Beta() const { return beta_; } const float &K() const { return k_; } const string &DataFormat() const { return data_format_; } private: Tensor *input_x_; Tensor *out_; Tensor *mid_out_; int n_; float alpha_; float beta_; float k_; string data_format_; }; class BatchNormParam : OpParam { public: BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_x_ = InputXFrom(inputs, scope); output_y_ = OutputYFrom(outputs, scope); input_bias_ = InputBiasFrom(inputs, scope); input_mean_ = InputMeanFrom(inputs, scope); input_scale_ = InputScaleFrom(inputs, scope); input_variance_ = InputVarianceFrom(inputs, scope); epsilon_ = GetAttr("epsilon", attrs); momentum_ = GetAttr("momentum", attrs); is_test_ = GetAttr("is_test", attrs); } const Tensor *InputX() const { return input_x_; } Tensor *OutputY() const { return output_y_; } const Tensor *InputBias() const { return input_bias_; } const Tensor *InputMean() const { return input_mean_; } const Tensor *InputScale() const { return input_scale_; } const Tensor *InputVariance() const { return input_variance_; } const float &Epsilon() const { return epsilon_; } const float &Momentum() const { return momentum_; } const bool &IsTest() const { return is_test_; } const string &DataFormat() const { return data_format_; } private: Tensor *input_x_; Tensor *output_y_; Tensor *input_bias_; Tensor *input_mean_; Tensor *input_scale_; Tensor *input_variance_; float epsilon_; float momentum_; bool is_test_; string data_format_; }; class PoolParam : public OpParam { public: PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_ = InputXFrom(inputs, scope); output_ = OutFrom(outputs, scope); pooling_type_ = GetAttr("pooling_type", attrs); ksize_ = GetAttr>("ksize", attrs); strides_ = GetAttr>("strides", attrs); paddings_ = GetAttr>("paddings", attrs); ceil_mode_ = GetAttr("ceil_mode", attrs); gloabal_pooling_ = GetAttr("global_pooling", attrs); } const Tensor *Input() const { return input_; } Tensor *Output() const { return output_; } const string &PoolingType() const { return pooling_type_; } const vector &Ksize() const { return ksize_; } const vector &Strides() const { return strides_; } const vector &Paddings() const { return paddings_; } bool isCeilMode() const { return ceil_mode_; } bool isGlobalPooling() const { return gloabal_pooling_; } private: Tensor *input_; Tensor *output_; string pooling_type_; vector ksize_; vector strides_; vector paddings_; bool ceil_mode_; bool gloabal_pooling_ = false; }; class PriorBoxParam : public OpParam { public: PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_ = InputFrom(inputs, scope); input_image_ = InputImageFrom(inputs, scope); output_boxes_ = OutputBoxesFrom(outputs, scope); output_variances_ = OutputVariancesFrom(outputs, scope); min_sizes_ = GetAttr>("min_sizes", attrs); max_sizes_ = GetAttr>("max_sizes", attrs); aspect_ratios_ = GetAttr>("aspect_ratios", attrs); variances_ = GetAttr>("variances", attrs); flip_ = GetAttr("flip", attrs); clip_ = GetAttr("clip", attrs); step_w_ = GetAttr("step_w", attrs); step_h_ = GetAttr("step_h", attrs); offset_ = GetAttr("offset", attrs); } const Tensor *Input() const { return input_; } const Tensor *InputImage() const { return input_image_; } Tensor *OutputBoxes() const { return output_boxes_; } Tensor *OutputVariances() const { return output_variances_; } const vector &MinSizes() const { return min_sizes_; } const vector &MaxSizes() const { return max_sizes_; } const vector &AspectRatios() const { return aspect_ratios_; } const vector &Variances() const { return variances_; } const bool &Flip() const { return flip_; } const bool &Clip() const { return clip_; } const float &StepW() const { return step_w_; } const float &StepH() const { return step_h_; } const float &Offset() const { return offset_; } private: Tensor *input_; Tensor *input_image_; Tensor *output_boxes_; Tensor *output_variances_; vector min_sizes_; vector max_sizes_; vector aspect_ratios_; vector variances_; bool flip_; bool clip_; float step_w_; float step_h_; float offset_; }; class BoxCoderParam : public OpParam { public: BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_priorbox_ = InputPriorBoxFrom(inputs, scope); input_priorboxvar_ = InputPriorBoxVarFrom(inputs, scope); input_targetbox_ = InputTargetBoxFrom(inputs, scope); output_box_ = OutputBoxFrom(outputs, scope); code_type_ = GetAttr("code_type", attrs); } const Tensor *InputPriorBox() const { return input_priorbox_; } const Tensor *InputPriorBoxVar() const { return input_priorboxvar_; } const Tensor *InputTargetBox() const { return input_targetbox_; } Tensor *OutputBox() const { return output_box_; } const std::string &CodeType() const { return code_type_; } private: Tensor *input_priorbox_; Tensor *input_priorboxvar_; Tensor *input_targetbox_; Tensor *output_box_; std::string code_type_; }; class SoftmaxParam : public OpParam { public: SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const Tensor *InputX() const { return input_x_; } Tensor *Out() const { return out_; } private: Tensor *input_x_; Tensor *out_; }; class FeedParam : public OpParam { public: FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const Tensor *InputX() const { return input_x_; } Tensor *Out() const { return out_; } private: Tensor *input_x_; Tensor *out_; }; class FetchParam : public OpParam { public: FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, const framework::Scope &scope) { input_x_ = InputXFrom(inputs, scope); out_ = OutFrom(outputs, scope); } const Tensor *InputX() const { return input_x_; } Tensor *Out() const { return out_; } private: Tensor *input_x_; Tensor *out_; }; } // namespace operators } // namespace paddle_mobile