// Copyright (c) 2019 Cambricon Authors. All Rights Reserved. #include #include "lite/backends/mlu/target_wrapper.h" #include "lite/core/kernel.h" #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace mlu { using TargetW = TargetWrapper; // Host to MLU memory. void CopyFromHostSync(void* target, const void* source, size_t size) { TargetW::MemcpySync(target, source, size, IoDirection::HtoD); } // MLU to Host memory. void CopyToHostSync(void* target, const void* source, size_t size) { TargetW::MemcpySync(target, source, size, IoDirection::DtoH); } /* * This kernel copies a tensor from host to MLU space. */ template class IoCopyHostToMluCompute : public KernelLite { public: using handler_t = KernelBase::type_infer_handler_t; using param_t = operators::IoCopyParam; void Run() override { auto& param = this->template Param(); CHECK(param.x->target() == TARGET(kHost) || param.x->target() == TARGET(kX86)); auto mem_size = param.x->memory_size(); // LOG(INFO) << "copy size " << mem_size; auto* data = param.y->mutable_data(TARGET(kMLU), mem_size); CopyFromHostSync(data, param.x->raw_data(), mem_size); } std::unique_ptr GetTypeInferHandler() override { std::unique_ptr res(new handler_t); *res = [](const std::map& inputs, const std::string& out) -> const Type* { CHECK(!inputs.empty()); auto* type = inputs.at("Input"); CHECK(type->target() == TARGET(kHost)); auto out_place = type->place(); out_place.target = TARGET(kMLU); auto* out_type = Type::Get(type->id(), out_place.target, out_place.precision, out_place.layout, out_place.device); return out_type; }; return res; } std::string doc() const override { return "Copy IO from HOST to MLU"; } }; /* * This kernel copies a tensor from MLU to host space. */ template class IoCopyMluToHostCompute : public KernelLite { public: void Run() override { auto& param = this->template Param(); CHECK(param.x->target() == TARGET(kMLU)); auto mem_size = param.x->memory_size(); auto* data = param.y->mutable_data(TARGET(kHost), mem_size); // sync queue to ensure process done auto& mlu_context = this->ctx_->template As(); CNRT_CALL(cnrtSyncQueue(mlu_context.exec_queue())); CopyToHostSync(data, param.x->raw_data(), mem_size); } std::string doc() const override { return "Copy IO from MLU to HOST"; } }; } // namespace mlu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( io_copy, kMLU, kFloat, kNHWC, paddle::lite::kernels::mlu::IoCopyHostToMluCompute, host_to_device_kFloat) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kMLU))}) .Finalize(); REGISTER_LITE_KERNEL( io_copy, kMLU, kFP16, kNHWC, paddle::lite::kernels::mlu::IoCopyHostToMluCompute, host_to_device_kFP16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kMLU))}) .Finalize(); REGISTER_LITE_KERNEL( io_copy, kMLU, kFloat, kNHWC, paddle::lite::kernels::mlu::IoCopyMluToHostCompute, device_to_host_kFloat) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kMLU))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize(); REGISTER_LITE_KERNEL( io_copy, kMLU, kFP16, kNHWC, paddle::lite::kernels::mlu::IoCopyMluToHostCompute, device_to_host_kFP16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kMLU))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize();