// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/bm/bridges/registry.h" #include "bmcompiler_if.h" #include "bmcompiler_if_lite.h" #include "bmcompiler_defs.h" namespace paddle { namespace lite { namespace kernels { namespace bm { namespace bridges { node_map_type ElementwiseConverter(const std::shared_ptr elementwise_op, graph_ctx_type* graph_ctx, const node_map_type& input_nodes) { // output converted nodes node_map_type output_nodes; auto scope = elementwise_op->scope(); auto op_info = elementwise_op->op_info(); auto op_type = op_info->Type(); // input const int input_num = 2; int **shape = new int *[input_num]; int *dim = new int[input_num]; const char **name = new const char *[input_num]; auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims(); name[0] = static_cast(x_var_name.c_str()); dim[0] = x_dims.size(); const long int* x_shape_data = const_cast(&x_dims.data()[0]); int i_x_shape_data[x_dims.size()]; for (size_t i = 0; i < x_dims.size(); i++) { i_x_shape_data[i] = static_cast(x_shape_data[i]); } shape[0] = i_x_shape_data; auto y_var_name = op_info->Input("Y").front(); auto y = scope->FindVar(y_var_name)->GetMutable(); auto y_dims = y->dims(); name[1] = static_cast(y_var_name.c_str()); dim[1] = y_dims.size(); const long int* y_shape_data = const_cast(&y_dims.data()[0]); int i_y_shape_data[y_dims.size()]; for (size_t i = 0; i < y_dims.size(); i++) { i_y_shape_data[i] = static_cast(y_shape_data[i]); } shape[1] = i_y_shape_data; bool y_is_const = input_nodes.find(y_var_name) == input_nodes.end(); // output auto output_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(output_var_name)->GetMutable(); auto output_dims = output->dims(); const long int* output_shape_data = const_cast(&output_dims.data()[0]); int i_output_shape_data[output_dims.size()]; for (size_t i = 0; i < output_dims.size(); i++) { i_output_shape_data[i] = static_cast(output_shape_data[i]); } if (y_is_const) { CHECK(op_type == "elementwise_add"); } int op_code{-1}; float coeff[2] = {1.f, 1.f}; if (op_type == "elementwise_mul") { op_code = 0; } else if (op_type == "elementwise_add") { op_code = 1; } else if(op_type == "elementwise_sub") { op_code = 1; coeff[1] = -1.f; } else { LOG(FATAL) << "UNSUPPORTED ELTWISE OPERATION: " << op_type; } if (!y_is_const) { add_eltwise_layer(graph_ctx->bm_compiler_handle, input_num, shape, dim, name, const_cast(i_output_shape_data), output_dims.size(), static_cast(output_var_name.c_str()), op_code, coeff); } else { const float* y_data = const_cast(y->mutable_data()); const float* x_data = const_cast(x->mutable_data()); bm_add_const_tensor(graph_ctx->bm_compiler_handle, name[1], shape[0], dim[0], static_cast(DTYPE_FP32), static_cast(y_data)); add_binary_layer_v2(graph_ctx->bm_compiler_handle, name[0], shape[0], dim[0], 0, static_cast(x_data), name[1], shape[0], dim[0], 0, static_cast(y_data), static_cast(output_var_name.c_str()), 0); } delete [] shape; delete [] name; delete [] dim; output_nodes[output_var_name] = output_var_name; return output_nodes; } } // namespace bridges } // namespace bm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_BM_BRIDGE(elementwise_add, paddle::lite::kernels::bm::bridges::ElementwiseConverter);