// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/matmul_compute.h" #include "lite/backends/xpu/math.h" #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { namespace math = paddle::lite::xpu::math; void MatMulCompute::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->As(); auto* x = param.X; auto* y = param.Y; auto* out = param.Out; auto mat_dim_a = math::CreateMatrixDescriptor( math::RowMatrixFromVector(x->dims()), 0, param.transpose_X); auto mat_dim_b = math::CreateMatrixDescriptor( math::ColumnMatrixFromVector(y->dims()), 0, param.transpose_Y); int lda = (mat_dim_a.trans_ ? mat_dim_a.height_ : mat_dim_a.width_); int ldb = (mat_dim_b.trans_ ? mat_dim_b.height_ : mat_dim_b.width_); int ldc = mat_dim_b.width_; int r = 0; if (mat_dim_a.batch_size_ == 0 || mat_dim_a.batch_size_ == 1) { r = xdnn::fc_int16(ctx.GetRawContext(), /* context */ mat_dim_a.trans_, /* TransA */ mat_dim_b.trans_, /* TransB */ mat_dim_a.height_, /* m */ mat_dim_b.width_, /* n */ mat_dim_a.width_, /* k */ param.alpha, /* alpha */ x->data(), /* A */ y->data(), /* B */ 0.0f, /* beta */ out->mutable_data(TARGET(kXPU)) /* C */); } else { // batch matmul r = xdnn::gemm_strided_batched_int16( ctx.GetRawContext(), /* context */ mat_dim_a.trans_, /* TransA */ mat_dim_b.trans_, /* TransB */ mat_dim_a.batch_size_, /* batch_size */ mat_dim_a.height_, /* M */ mat_dim_b.width_, /* N */ mat_dim_a.width_, /* K */ param.alpha, /* alpha */ x->data(), /* A */ lda, /* lda */ mat_dim_a.stride_, /* stride_a */ y->data(), /* B */ ldb, /* ldb */ mat_dim_b.stride_, /* stride_b */ 0.0f, /* beta */ out->mutable_data(TARGET(kXPU)), /* C */ ldc, /* ldc */ mat_dim_a.height_ * mat_dim_b.width_ /* stride_c */); } CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( matmul, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::MatMulCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();