// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/conv_compute.h" #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { template <> void Conv2dCompute::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->As(); auto& x_dims = param.x->dims(); auto& w_dims = param.filter->dims(); int groups = param.groups; auto& strides = param.strides; auto paddings = *param.paddings; auto dilations = *param.dilations; int r = xdnn::conv2d_forward_int16( ctx.GetRawContext(), /* context */ x_dims[0], /* num */ x_dims[1], /* input_c */ x_dims[2], /* input_h */ x_dims[3], /* input_w */ w_dims[0], /* num_filter */ w_dims[2], /* kernel_h */ w_dims[3], /* kernel_w */ strides[0], /* stride_h */ strides[1], /* stride_w */ paddings[0], /* pad_h */ paddings[1], /* pad_w */ dilations[0], /* dilation_h */ dilations[1], /* dilation_w */ groups, /* group */ param.x->data(), /* bottom */ param.filter->data(), /* weight */ param.output->mutable_data(TARGET(kXPU)), /* top */ nullptr, /* bias */ nullptr, /* branch */ xdnn::Activation_t::LINEAR, /* type */ nullptr, /* max_image_ptr */ nullptr, /* max_filter_ptr */ nullptr /* max_result_ptr */); CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle namespace xpu = paddle::lite::kernels::xpu; using Conv2dFp32 = xpu::Conv2dCompute; REGISTER_LITE_KERNEL(conv2d, kXPU, kFloat, kNCHW, Conv2dFp32, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();