// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/batch_norm_compute.h" #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { void BatchNormCompute::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->As(); float epsilon = param.epsilon; auto& x_dims = param.x->dims(); int r = xdnn::batch_norm_infer_forward( ctx.GetRawContext(), /* context */ epsilon, /* epsilon */ x_dims[0], /* img_n */ x_dims[1], /* img_c */ x_dims[2], /* img_h */ x_dims[3], /* img_w */ param.x->data(), /* img_gm */ param.y->mutable_data(TARGET(kXPU)), /* out_gm */ param.scale->data(), /* scale_gm */ param.bias->data(), /* bias_gm */ param.mean->data(), /* mean_gm */ param.variance->data() /* var__gm */); CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(batch_norm, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::BatchNormCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Mean", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Variance", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("Y", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("MeanOut", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("VarianceOut", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();