/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #ifdef _OPENMP #include #endif // #include #include #include "common/log.h" #include "framework/context.h" #include "memory/t_malloc.h" #include "operators/math/gemm/gemm_kernel.h" namespace paddle_mobile { namespace operators { namespace math { static framework::CPUContext *g_cpu_ctx = framework::CPUContext::Context(); int CeilDiv(const int &x, const int &y) { return (x + y - 1) / y; } unsigned int ResetL1Cache(const unsigned int L1_size, const int thread_num, const int N, const int K) { unsigned int L1 = L1_size; if (thread_num == 1) { if (N >= 30000 && K > 100) { L1 *= 4; } else if (N >= 10000 && K > 100) { L1 *= 2; } } return L1; } class Executor { public: Executor() : num_threads_(1) { #ifdef _OPENMP num_threads_ = omp_get_max_threads(); #endif } virtual ~Executor() {} protected: int num_threads_; }; template class GemmExecutor : public Executor { typedef typename Strategy::Itype Itype; typedef typename Strategy::Otype Otype; public: GemmExecutor(const bool transA, const bool transB, const int M, const int N, const int K) : Executor(), transA_(transA), transB_(transB), M_(M), N_(N), K_(K) { unsigned int L1_size = 0; unsigned int L2_size = 0; if (M_ > N_) { L2_size = ResetL1Cache(g_cpu_ctx->L1_cache, num_threads_, M_, K_); L1_size = g_cpu_ctx->L2_cache; } else { L1_size = ResetL1Cache(g_cpu_ctx->L1_cache, num_threads_, N_, K_); L2_size = g_cpu_ctx->L2_cache; } rhs_tile_num_ = L1_size / (K_ * sizeof(Itype)); if (rhs_tile_num_ == 0) { rhs_tile_num_ = Strategy::out_width(); } else { int n_block = CeilDiv(N_, rhs_tile_num_); rhs_tile_num_ = CeilDiv(N_, n_block); rhs_tile_num_ = CeilDiv(rhs_tile_num_, Strategy::out_width()); rhs_tile_num_ *= Strategy::out_width(); } // lhs_tile_num_ = CeilDiv(M, Strategy::out_height()) * // Strategy::out_height(); lhs_tile_num_ = L2_size / (K_ * sizeof(Itype)); if (lhs_tile_num_ == 0) { lhs_tile_num_ = Strategy::out_height(); } else { int m_block = CeilDiv(M_, lhs_tile_num_); lhs_tile_num_ = CeilDiv(M_, m_block); lhs_tile_num_ = CeilDiv(lhs_tile_num_, Strategy::out_height()); lhs_tile_num_ *= Strategy::out_height(); } } void operator()(const float alpha, const Itype *A, const int lda, const Itype *B, const int ldb, const float beta, Otype *C, const int ldc) { // struct timeval tv_begin, tv_end; // gettimeofday(&tv_begin,NULL); if (M_ > N_) { int nblock = CeilDiv(N_, Strategy::out_width()) * Strategy::out_width(); lhs_worksize_ = sizeof(Itype) * lhs_tile_num_ * K_ * num_threads_; rhs_worksize_ = sizeof(Itype) * K_ * nblock; out_worksize_ = sizeof(Otype) * lhs_tile_num_ * nblock * num_threads_; ldc_ = nblock; } else { int mblock = CeilDiv(M_, Strategy::out_height()) * Strategy::out_height(); lhs_worksize_ = sizeof(Itype) * mblock * K_; rhs_worksize_ = sizeof(Itype) * K_ * rhs_tile_num_ * num_threads_; out_worksize_ = sizeof(Otype) * mblock * rhs_tile_num_ * num_threads_; ldc_ = rhs_tile_num_; } lhs_workspace_ = static_cast(paddle_mobile::memory::Alloc(lhs_worksize_)); rhs_workspace_ = static_cast(paddle_mobile::memory::Alloc(rhs_worksize_)); out_workspace_ = static_cast(paddle_mobile::memory::Alloc(out_worksize_)); // std::cout << "M: " << M_ << ", N: " << N_ << ", K: " << K_ << std::endl; // std::cout << "lhs_block: " << CeilDiv(M_, lhs_tile_num_) << ", " // << "rhs_block: " << CeilDiv(N_, rhs_tile_num_) << std::endl; if (M_ > N_) { strategy_.pack_rhs(K_, N_, B, ldb, rhs_workspace_, true); #pragma omp parallel for for (int lhs_block = 0; lhs_block < M_; lhs_block += lhs_tile_num_) { int lhs_range = std::min(M_ - lhs_block, lhs_tile_num_); #ifdef _OPENMP int thread_id = omp_get_thread_num(); #else int thread_id = 0; #endif float *local_A = lhs_workspace_ + lhs_tile_num_ * K_ * thread_id; float *local_C = out_workspace_ + lhs_tile_num_ * ldc_ * thread_id; // load lhs into lhs_workspace strategy_.pack_lhs(lhs_range, K_, A + lhs_block * lda, lda, local_A, false); for (int rhs_block = 0; rhs_block < N_; rhs_block += rhs_tile_num_) { int rhs_range = std::min(N_ - rhs_block, rhs_tile_num_); float *local_B = rhs_workspace_ + K_ * rhs_block; for (int rhs_tile = 0; rhs_tile < rhs_range; rhs_tile += Strategy::out_width()) { for (int lhs_tile = 0; lhs_tile < lhs_range; lhs_tile += Strategy::out_height()) { int offset = lhs_tile * ldc_ + rhs_block + rhs_tile; strategy_.kernel(local_A + lhs_tile * K_, local_B + rhs_tile * K_, K_, local_C + offset, ldc_); } } } strategy_.write(lhs_range, N_, alpha, local_C, ldc_, beta, C + lhs_block * ldc, ldc); } } else { strategy_.pack_lhs(M_, K_, A, lda, lhs_workspace_, true); #pragma omp parallel for for (int rhs_block = 0; rhs_block < N_; rhs_block += rhs_tile_num_) { int rhs_range = std::min(N_ - rhs_block, rhs_tile_num_); #ifdef _OPENMP int thread_id = omp_get_thread_num(); #else int thread_id = 0; #endif float *local_B = rhs_workspace_ + K_ * rhs_tile_num_ * thread_id; float *local_C = out_workspace_ + lhs_tile_num_ * ldc_ * thread_id; // load rhs into rhs_workspace strategy_.pack_rhs(K_, rhs_range, B + rhs_block, ldb, local_B, false); for (int lhs_block = 0; lhs_block < M_; lhs_block += lhs_tile_num_) { int lhs_range = std::min(M_ - lhs_block, lhs_tile_num_); float *local_A = lhs_workspace_ + lhs_block * K_; for (int lhs_tile = 0; lhs_tile < lhs_range; lhs_tile += Strategy::out_height()) { for (int rhs_tile = 0; rhs_tile < rhs_range; rhs_tile += Strategy::out_width()) { int offset = (lhs_block + lhs_tile) * ldc_ + rhs_tile; strategy_.kernel(local_A + lhs_tile * K_, local_B + rhs_tile * K_, K_, local_C + offset, ldc_); } } } strategy_.write(M_, rhs_range, alpha, local_C, ldc_, beta, C + rhs_block, ldc); } } paddle_mobile::memory::Free(lhs_workspace_); paddle_mobile::memory::Free(rhs_workspace_); paddle_mobile::memory::Free(out_workspace_); // gettimeofday(&tv_end,NULL); // float elapsed = (tv_end.tv_sec - tv_begin.tv_sec) * 1000.f + // (tv_end.tv_usec - tv_begin.tv_usec) / 1000.f; // std::cout << "elapsed: " << elapsed << "ms, speed: " // << (M_ * N_ * K_ / 1000.f / 1000.f) / elapsed // << " gflops" << std::endl; } virtual ~GemmExecutor() {} private: const unsigned int M_; const unsigned int N_; const unsigned int K_; const bool transA_; const bool transB_; unsigned int lhs_tile_num_ = 0; unsigned int rhs_tile_num_ = 0; unsigned int out_tile_num_ = 0; unsigned int lhs_worksize_ = 0; unsigned int rhs_worksize_ = 0; unsigned int out_worksize_ = 0; unsigned int ldc_ = 0; Itype *lhs_workspace_ = nullptr; Itype *rhs_workspace_ = nullptr; Otype *out_workspace_ = nullptr; Strategy strategy_; }; template class GemvExecutor : public Executor { typedef typename Strategy::Itype Itype; typedef typename Strategy::Otype Otype; public: GemvExecutor(const bool transA, const int M, const int N) : Executor(), M_(M), N_(N), trans_(transA) {} void operator()(const float alpha, const Itype *A, const int lda, const Itype *B, const float beta, Otype *C) { strategy_.kernel(trans_, M_, N_, alpha, A, lda, B, beta, C); } virtual ~GemvExecutor() {} private: const unsigned int M_; const unsigned int N_; const bool trans_; Strategy strategy_; }; } // namespace math } // namespace operators } // namespace paddle_mobile