// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/stack_compute.h" #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { void StackCompute::PrepareForRun() { auto& param = this->Param(); int n = param.X.size(); void* x_ptr = nullptr; xpu_malloc(&x_ptr, n * 8 /* sizeof(__global__ float*) */); x_ptr_guard_.reset(x_ptr); x_ptr_cpu_.reserve(n); } void StackCompute::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->As(); int n = param.X.size(); auto x_dims = param.X[0]->dims(); int axis = param.axis; // XXX(miaotianxiang): +1? if (axis < 0) axis += (x_dims.size() + 1); auto matrix = x_dims.Flatten2D(axis); int height = matrix[0]; int width = matrix[1]; for (int i = 0; i < n; ++i) { x_ptr_cpu_[i] = param.X[i]->data(); } xpu_memcpy(x_ptr_guard_.get(), &x_ptr_cpu_[0], n * 8, XPU_HOST_TO_DEVICE); int r = xdnn::stack_forward( ctx.GetRawContext(), /* context */ height, /* height */ width, /* width */ n, /* n */ x_ptr_guard_.get(), /* x_ptr */ param.Out->mutable_data(TARGET(kXPU)) /* out */); CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( stack, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::StackCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("Y", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();