/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "io/executor.h" #include #include #include #include "common/enforce.h" #include "common/log.h" #include "framework/framework.pb-c.h" #include "framework/lod_tensor.h" #include "framework/operator.h" #include "framework/program/program-optimize/program_optimize.h" #include "framework/program/program_desc.h" #include "framework/program/var_desc.h" #include "framework/scope.h" #include "framework/tensor.h" namespace paddle_mobile { using framework::Variable; char *Get_binary_data(std::string filename) { FILE *file = fopen(filename.c_str(), "rb"); PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ", filename.c_str()); fseek(file, 0, SEEK_END); int64_t size = ftell(file); PADDLE_MOBILE_ENFORCE(size > 0, "size is too small"); rewind(file); char *data = new char[size]; size_t bytes_read = fread(data, 1, size, file); PADDLE_MOBILE_ENFORCE(bytes_read == size, "read binary file bytes do not match with fseek"); fclose(file); return data; } template Executor::Executor(const framework::Program p, const bool use_optimize, const bool loddable) : program_(p), use_optimize_(use_optimize), loddable_(loddable) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } Variable *variable_ptr = program_.scope->Var("batch_size"); variable_ptr->SetValue(1); PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr, "to_predict_program_ == NULL!"); const std::vector> &blocks = to_predict_program_->Blocks(); DLOG << "executor in loaddable mode: " << loddable_; for (int i = 0; i < blocks.size(); ++i) { std::shared_ptr block_desc = blocks[i]; std::vector> ops = block_desc->Ops(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op = ops[j]; DLOG << "create op: " << op->Type(); auto op_base = framework::OpRegistry::CreateOp( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); // use pre_infershape to pre resize , but if u use an lod mode tensor u // need to resize in runtime if (!loddable_) { op_base->InferShape(); } ops_of_block_[*block_desc.get()].push_back(op_base); } } if (program_.combined) { InitCombineMemory(); } else { InitMemory(); } std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; for (const auto &op : ops) { op->Init(); } } // should use istream to keep offset for data template void LoadMemInternal(const void *data, framework::LoDTensor *tensor) { const char *data_buf = static_cast(data); int64_t size = tensor->numel(); Dtype* tensor_data = tensor->mutable_data(); // stored as low precision, but compute with float // TODO(hjchen2) must consider signed and unsigned if (0) { float min_value; float max_value; memcpy(&min_value, data_buf, sizeof(float)); memcpy(&max_value, data_buf + sizeof(float), sizeof(float)); data_buf += 2 * sizeof(float); const float factor = (max_value - min_value) / 255.0; const uint8_t *uint8_data = reinterpret_cast(data_buf); for (int k = 0; k < size; ++k) { tensor_data[k] = uint8_data[k] * factor + min_value; } data_buf += size * sizeof(uint8_t); } else { memcpy(tensor_data, data_buf, size * sizeof(Dtype)); data_buf += size * sizeof(Dtype); } } template void Executor::LoadMemory(const void *data, const framework::VarDesc var_desc, framework::LoDTensor *tensor) { const char *data_buf = static_cast(data); // version uint32_t version = *(reinterpret_cast(data_buf)); data_buf += sizeof(uint32_t); // lod information uint64_t lod_level = *(reinterpret_cast(data_buf)); data_buf += sizeof(uint64_t); auto *lod = tensor->mutable_lod(); lod->resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *(reinterpret_cast(data_buf)); data_buf += sizeof(uint64_t); std::vector tmp_dim(size / sizeof(size_t)); memcpy(tmp_dim.data(), data_buf, size); (*lod)[i] = std::move(tmp_dim); data_buf += size; } // tensor version uint32_t tensor_version = *(reinterpret_cast(data_buf)); data_buf += sizeof(uint32_t); // tensor desc size int32_t tensor_desc_size = *(reinterpret_cast(data_buf)); data_buf += sizeof(int32_t); // skip tensor desc data_buf += tensor_desc_size; const framework::TensorDesc &tensor_desc = var_desc.Tensor_desc(); tensor->Resize(framework::make_ddim(tensor_desc.Dims())); // parse tensor from stream switch (tensor_desc.DataType()) { case framework::VARTYPE_TYPE_FP32: LoadMemInternal(data_buf, tensor); break; case framework::VARTYPE_TYPE_INT8: LoadMemInternal(data_buf, tensor); break; case framework::VARTYPE_TYPE_INT32: LoadMemInternal(data_buf, tensor); break; default: LOG(kLOG_ERROR) << "data type is not supported"; } } template void Executor::InitMemory() { for (const auto &block : to_predict_program_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); auto tensor = var->template GetMutable(); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } char *origin_data = Get_binary_data(program_.model_path + "/" + var_desc->Name()); char *data = origin_data; LoadMemory(data, *var_desc, tensor); delete[] origin_data; } else { if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) { varInputMemory(var_desc, var, tensor); } } } } } template void Executor::InitCombineMemory() { char *origin_data; if (program_.combined_params_buf && program_.combined_params_len) { LOG(kLOG_INFO) << "use outter memory"; origin_data = (char *)program_.combined_params_buf; } else { LOG(kLOG_INFO) << " begin init combine memory"; origin_data = Get_binary_data(program_.para_path); } PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!"); char *data = origin_data; for (const auto &block : to_predict_program_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); auto tensor = var->template GetMutable(); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } LoadMemory(data, *var_desc, tensor); } else { if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) { varInputMemory(var_desc, var, tensor); } } } } delete[] origin_data; LOG(kLOG_INFO) << " end init combine memory "; } template bool Executor::varInputMemory( const std::shared_ptr &var_desc, Variable *var, framework::LoDTensor *tensor) const { auto type = var_desc->Tensor_desc().DataType(); bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) || (type == framework::VARTYPE_TYPE_INT8) || (type == framework::VARTYPE_TYPE_INT32) || (type == framework::VARTYPE_TYPE_INT64); PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type); switch (type) { case framework::VARTYPE_TYPE_FP32: { tensor->mutable_data(); break; } case framework::VARTYPE_TYPE_INT8: { tensor->mutable_data(); break; } case framework::VARTYPE_TYPE_INT32: { tensor->mutable_data(); break; } case framework::VARTYPE_TYPE_INT64: { tensor->mutable_data(); break; } default: { break; } } return is_mute_match; } template std::shared_ptr Executor::Predict( const framework::Tensor &t) { framework::Variable *g_feed_value = program_.scope->Var("feed"); framework::Tensor *feed_tensor = g_feed_value->GetMutable(); feed_tensor->Resize(t.dims()); feed_tensor->ShareDataWith(t); std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops.size()); #endif for (int i = 0; i < ops.size(); i++) { #ifdef PADDLE_MOBILE_PROFILE struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif // to Run ops[i]->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif } auto last_op = ops.rbegin(); auto output_map = (*last_op)->Outputs(); std::vector out_keys = (*last_op)->GetOutKeys(); PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output"); framework::LoDTensor *output_tensor = framework::GetVarValue(out_keys[0], output_map, *(program_.scope)); #ifdef PADDLE_MOBILE_PROFILE // FILE *pf = fopen("profile.out", "w"); std::unordered_map _tp; for (int i = 0; i < profile.size(); i++) { const auto &pInfo = profile[i]; uint64_t timeCost = pInfo.runEnd - pInfo.runBegin; _tp[ops[i]->Type()] += timeCost; // fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i, // ops[i]->Type().c_str(), // pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost); } // fclose(pf); printf("====================[ profile ]======================\n"); using prof_t = std::pair; std::vector _tv(_tp.begin(), _tp.end()); uint64_t _ptotal = 0; for (auto const &p : _tv) { _ptotal += p.second; } auto compf = [](const prof_t &a, const prof_t &b) { return a.second > b.second; }; std::sort(_tv.begin(), _tv.end(), compf); _tv.push_back(std::make_pair("total", _ptotal)); for (auto const &p : _tv) { printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(), static_cast(p.second), static_cast(p.second) / _ptotal * 100.0); } printf("====================[---------]======================\n"); #endif return std::make_shared(framework::Tensor(*output_tensor)); } template std::shared_ptr Executor::PredictLod( const framework::LoDTensor &t) { framework::Variable *g_feed_value = program_.scope->Var("feed"); framework::LoDTensor *feed_tensor = g_feed_value->GetMutable(); feed_tensor->Resize(t.dims()); feed_tensor->ShareDataWith(t); feed_tensor->set_lod(t.lod()); std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops.size()); #endif for (int i = 0; i < ops.size(); i++) { #ifdef PADDLE_MOBILE_PROFILE struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif if (loddable_) { ops[i]->InferShape(); } // to Run ops[i]->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif } auto last_op = ops.rbegin(); auto output_map = (*last_op)->Outputs(); std::vector out_keys = (*last_op)->GetOutKeys(); PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output"); framework::LoDTensor *output_tensor = framework::GetVarValue(out_keys[0], output_map, *(program_.scope)); #ifdef PADDLE_MOBILE_PROFILE // FILE *pf = fopen("profile.out", "w"); std::unordered_map _tp; for (int i = 0; i < profile.size(); i++) { const auto &pInfo = profile[i]; uint64_t timeCost = pInfo.runEnd - pInfo.runBegin; _tp[ops[i]->Type()] += timeCost; // fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i, // ops[i]->Type().c_str(), // pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost); } // fclose(pf); printf("====================[ profile ]======================\n"); using prof_t = std::pair; std::vector _tv(_tp.begin(), _tp.end()); uint64_t _ptotal = 0; for (auto const &p : _tv) { _ptotal += p.second; } auto compf = [](const prof_t &a, const prof_t &b) { return a.second > b.second; }; std::sort(_tv.begin(), _tv.end(), compf); _tv.push_back(std::make_pair("total", _ptotal)); for (auto const &p : _tv) { printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(), static_cast(p.second), static_cast(p.second) / _ptotal * 100.0); } printf("====================[---------]======================\n"); #endif return std::make_shared( framework::LoDTensor(*output_tensor)); } template std::shared_ptr Executor::Predict( const framework::Tensor &t, int block_id) { return Predict(t); } template std::vector::Ptype> Executor::Predict( const std::vector &input, const std::vector &dims) { framework::Tensor tensor(input, framework::make_ddim(dims)); std::shared_ptr output_tensor = Predict(tensor, 0); Executor::Ptype *output_ptr = output_tensor->data::Ptype>(); std::vector::Ptype> result_vector; for (int j = 0; j < output_tensor->numel(); ++j) { result_vector.push_back(output_ptr[j]); } return result_vector; } template class Executor; template class Executor; template class Executor; template class Executor; } // namespace paddle_mobile