// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/paddle_place.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/core/target_wrapper.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void copy_properties(operators::IoCopyParam& param) { param.y->set_persistable(param.x->persistable()); auto out_lod = param.y->mutable_lod(); *out_lod = param.x->lod(); param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor()); } /* * This kernel copies a tensor from host to FPGA space. */ class IoCopyHostCHWToFpgaHWCCompute : public KernelLite { public: void Run() override { auto& param = Param(); CHECK(param.x->target() == TARGET(kHost) || param.x->target() == TARGET(kFPGA)); param.x->ZynqTensor()->flush(); if (param.x->ZynqTensor()->dataType() == zynqmp::INT32) { param.y->mutable_data(); param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor()); param.y->ZynqTensor()->flush(); copy_properties(param); return; } param.y->mutable_data(); param.y->ZynqTensor()->setDataLocation(zynqmp::Device); if (param.x->ZynqTensor()->aligned() && param.x->ZynqTensor()->shape().shouldAlign()) { zynqmp::Tensor tempTensor; tempTensor.mutableData(zynqmp::FP16, param.x->ZynqTensor()->shape()); tempTensor.copyFrom(param.x->ZynqTensor()); tempTensor.setAligned(true); tempTensor.unalignImage(); tempTensor.flush(); param.y->ZynqTensor()->copyFrom(&tempTensor); } else { param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor()); } copy_properties(param); param.y->ZynqTensor()->invalidate(); } std::string doc() const override { return "Copy IO from HOST to FPGA"; } }; /* * This kernel copies a tensor from FPGA to host space. */ class IoCopyFpgaToHostCompute : public KernelLite { public: void Run() override { auto& param = Param(); CHECK(param.x->target() == TARGET(kHost) || param.x->target() == TARGET(kFPGA)); param.x->ZynqTensor()->syncToDevice(); param.y->mutable_data(); param.y->ZynqTensor()->setDataType(zynqmp::FP32); param.y->ZynqTensor()->setDataLocation(zynqmp::CPU); if (param.x->ZynqTensor()->aligned() && param.x->ZynqTensor()->shape().shouldAlign()) { zynqmp::Tensor tempTensor; tempTensor.mutableData(zynqmp::FP16, param.x->ZynqTensor()->shape()); tempTensor.copyFrom(param.x->ZynqTensor()); tempTensor.setAligned(true); tempTensor.unalignImage(); param.y->ZynqTensor()->copyFrom(&tempTensor); } else { param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor()); } param.y->ZynqTensor()->invalidate(); copy_properties(param); } std::string doc() const override { return "Copy IO from FPGA to HOST"; } }; void hwc_to_chw(float* chw_data, float* hwc_data, int num, int channel, int height, int width) { int chw = channel * height * width; int wc = width * channel; int wh = width * height; int index = 0; for (int n = 0; n < num; n++) { for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { for (int c = 0; c < channel; c++) { chw_data[n * chw + c * wh + h * width + w] = hwc_data[index]; index++; } } } } } class IoCopyFpgaToHostCHWCompute : public KernelLite { public: void Run() override { auto& param = Param(); CHECK(param.x->target() == TARGET(kHost) || param.x->target() == TARGET(kFPGA)); param.x->ZynqTensor()->syncToDevice(); if (param.x->ZynqTensor()->dataType() == zynqmp::INT32) { param.y->mutable_data(); param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor()); return; } Tensor hwc; hwc.Resize(param.y->dims()); float* hwc_data = hwc.mutable_data(); float* chw_data = param.y->mutable_data(); param.y->ZynqTensor()->setDataType(zynqmp::FP32); hwc.ZynqTensor()->setDataLocation(zynqmp::CPU); param.y->ZynqTensor()->setDataLocation(zynqmp::CPU); if (param.x->ZynqTensor()->aligned() && param.x->ZynqTensor()->shape().shouldAlign()) { zynqmp::Tensor tempTensor; tempTensor.mutableData(zynqmp::FP16, param.x->ZynqTensor()->shape()); tempTensor.copyFrom(param.x->ZynqTensor()); tempTensor.setAligned(true); tempTensor.saveToFile("temp_1", true); // tempTensor.unalignImage(); tempTensor.saveToFile("temp_2", true); hwc.ZynqTensor()->copyFrom(&tempTensor); } else { // hwc.ZynqTensor()->copyFrom(param.x->ZynqTensor()); float16* in_data = param.x->ZynqTensor()->data(); // float* f_data = param.x->ZynqTensor()->flush(); float max = 0; for (int i = 0; i < param.x->dims().production(); i++) { float value = zynqmp::half_to_float(in_data[i]); hwc_data[i] = value; if (value < 0) { value = -value; } if (value > max) { max = value; } } param.x->ZynqTensor()->scale()[0] = max / 127; param.x->ZynqTensor()->scale()[1] = 127 / max; } int num = 1; int channel = 1; int height = 1; int width = 1; auto dims = param.y->ZynqTensor()->shape(); hwc_to_chw(chw_data, hwc_data, dims.num(), dims.channel(), dims.height(), dims.width()); param.y->ZynqTensor()->copyFrom(hwc.ZynqTensor()); // param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor()); param.y->ZynqTensor()->flush(); copy_properties(param); param.x->ZynqTensor()->invalidate(); param.x->ZynqTensor()->flush(); // hwc.ZynqTensor()->saveToFile("hwc", true); param.x->ZynqTensor()->saveToFile("io2_x", true); param.y->ZynqTensor()->saveToFile("io2_y", true); } std::string doc() const override { return "Copy IO from FPGA to HOST"; } }; } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(io_copy, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyHostCHWToFpgaHWCCompute, host_to_device) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt32), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(io_copy, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyHostCHWToFpgaHWCCompute, host_float_chw_to_device_fp16_hwc) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(io_copy, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyFpgaToHostCHWCompute, device_to_host_chw) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL(io_copy, kFPGA, kAny, kAny, paddle::lite::kernels::fpga::IoCopyFpgaToHostCHWCompute, device_to_host_hwc_chw) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .Finalize(); // REGISTER_LITE_KERNEL(io_copy_once, // kFPGA, // kAny, // kAny, // paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute, // host_to_device_once) // .BindInput("Input", // {LiteType::GetTensorTy(TARGET(kHost), // PRECISION(kAny), // DATALAYOUT(kAny))}) // .BindOutput("Out", // {LiteType::GetTensorTy(TARGET(kFPGA), // PRECISION(kAny), // DATALAYOUT(kAny))}) // .Finalize(); // REGISTER_LITE_KERNEL(io_copy_once, // kFPGA, // kAny, // kAny, // paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute, // device_to_host_once) // .BindInput("Input", // {LiteType::GetTensorTy(TARGET(kFPGA), // PRECISION(kAny), // DATALAYOUT(kAny))}) // .BindOutput("Out", // {LiteType::GetTensorTy(TARGET(kHost), // PRECISION(kAny), // DATALAYOUT(kAny))}) // .Finalize(); // ========================================================== // std::unique_ptr GetTypeInferHandler() override { // std::unique_ptr res(new type_infer_handler_t); // *res = [](const std::map& inputs, // const std::string& out) -> const Type* { // CHECK(!inputs.empty()); // auto* type = inputs.at("Input"); // CHECK(type->target() == TARGET(kHost)); // auto out_place = type->place(); // out_place.target = TARGET(kFPGA); // auto* out_type = Type::Get(type->id(), // out_place.target, // out_place.precision, // out_place.layout, // out_place.device); // return out_type; // }; // return res; // }