// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/fpga/conv_compute.h" #include #include "lite/core/op_registry.h" #include "lite/core/type_system.h" #include "lite/backends/fpga/KD/debugger.hpp" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void ConvCompute::PrepareForRun() { auto& param = this->Param(); param.output->mutable_data(); int pad_h = (*param.paddings)[0]; int pad_w = (*param.paddings)[2]; // ==================================================== if (param.x->ZynqTensor()->shape().channel() != 1 && param.groups == param.x->ZynqTensor()->shape().channel()) { zynqmp::DepthwiseConvParam& conv_param = dw_conv_pe_.param(); conv_param.input = param.x->ZynqTensor(); conv_param.output = param.output->ZynqTensor(); conv_param.filter = param.filter->ZynqTensor(); conv_param.filter->setDataType(zynqmp::FP32); conv_param.groups = param.groups; conv_param.strides = param.strides; conv_param.paddings = std::vector({pad_h, pad_w}); conv_param.dilations = *param.dilations; fill_scale_bias_const(&conv_param); conv_param.bias()->copyFrom(param.bias->ZynqTensor()); if (param.fuse_relu) { conv_param.activeParam.type = zynqmp::TYPE_RELU; } if (param.activation_param.Leaky_relu_alpha > 0.001) { conv_param.activeParam.type = zynqmp::TYPE_LEAKY_RELU; conv_param.activeParam.leaky_relu_factor = param.activation_param.Leaky_relu_alpha; } dw_conv_pe_.init(); dw_conv_pe_.apply(); } else { zynqmp::ConvParam& conv_param = conv_pe_.param(); conv_param.input = param.x->ZynqTensor(); conv_param.output = param.output->ZynqTensor(); conv_param.filter = param.filter->ZynqTensor(); conv_param.filter->setDataType(zynqmp::FP32); conv_param.groups = param.groups; conv_param.strides = param.strides; conv_param.paddings = std::vector({pad_h, pad_w}); conv_param.dilations = *param.dilations; fill_scale_bias_const(&conv_param); if (param.bias != nullptr) { conv_param.bias()->copyFrom(param.bias->ZynqTensor()); } if (param.fuse_relu) { conv_param.activeParam.type = zynqmp::TYPE_RELU; } if (param.activation_param.Leaky_relu_alpha > 0.001) { conv_param.activeParam.type = zynqmp::TYPE_LEAKY_RELU; conv_param.activeParam.leaky_relu_factor = param.activation_param.Leaky_relu_alpha; } conv_pe_.init(); conv_pe_.apply(); } // std::cout << "Leaky_relu_alpha:" << param.activation_param.Leaky_relu_alpha // << std::endl; } void ConvCompute::Run() { auto& param = this->Param(); if (param.x->ZynqTensor()->shape().channel() != 1 && param.groups == param.x->ZynqTensor()->shape().channel()) { dw_conv_pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::DepthwiseConvParam& dwconv_param = dw_conv_pe_.param(); Debugger::get_instance().registerOutput("dwconv", dwconv_param.output); #endif } else { // zynqmp::ConvParam& conv_param = conv_pe_.param(); conv_pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::ConvParam& conv_param = conv_pe_.param(); Debugger::get_instance().registerOutput("conv", conv_param.output); #endif } } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( conv2d, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ConvCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(depthwise_conv2d, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ConvCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize();