// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/fpga/activation_compute.h" #include "lite/backends/fpga/KD/float16.hpp" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void ReluCompute::PrepareForRun() { auto& param = this->Param(); auto output_data = param.Out->mutable_data(); zynqmp::InputParam& relu_param = pe_.param(); relu_param.input = param.X->ZynqTensor(); relu_param.output = param.Out->ZynqTensor(); pe_.init(); pe_.apply(); } void ReluCompute::Run() { pe_.dispatch(); } void SigmoidCompute::Run() { // TODO(chonwhite) use fpga and arm implementation; auto& param = this->Param(); auto output_data = param.Out->mutable_data(); int numel = param.Out->numel(); float16* in_data = param.X->ZynqTensor()->data(); float16* out_data = param.Out->ZynqTensor()->data(); param.X->ZynqTensor()->syncToCPU(); float max = 0.0f; for (int i = 0; i < numel; i++) { /* code */ float value = zynqmp::half_to_float(in_data[i]); value = 1 / (1 + exp(-value)); out_data[i] = zynqmp::float_to_half(value); max = std::max(std::abs(value), max); } param.Out->ZynqTensor()->scale()[0] = max / 127.0; param.Out->ZynqTensor()->scale()[1] = 127.0 / max; param.Out->ZynqTensor()->flush(); } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( relu, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ReluCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(sigmoid, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::SigmoidCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize();