/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "lite/kernels/arm/sequence_pool_compute.h" #include #include #include "lite/backends/arm/math/funcs.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void SequencePoolCompute::PrepareForRun() {} void SequencePoolCompute::Run() { auto& param = Param(); auto& output = param.Out; const auto* din = param.X->data(); float* dout = output->mutable_data(); const auto pool_type = param.pool_type; const auto lod = param.X->lod()[0]; int64_t width = param.X->numel() / param.X->dims()[0]; if (pool_type == "SUM") { lite::arm::math::seq_pool_sum(din, dout, lod, width); } else if (pool_type == "AVERAGE") { lite::arm::math::seq_pool_average(din, dout, lod, width); } else if (pool_type == "SQRT") { lite::arm::math::seq_pool_sqrt(din, dout, lod, width); } else if (pool_type == "MAX") { lite::arm::math::seq_pool_max(din, dout, lod, width); } else if (pool_type == "MIN") { lite::arm::math::seq_pool_min(din, dout, lod, width); } else if (pool_type == "FIRST") { lite::arm::math::seq_pool_first(din, dout, lod, width); } else if (pool_type == "LAST") { lite::arm::math::seq_pool_last(din, dout, lod, width); } else { LOG(ERROR) << " UNKNOWN sequence pool type"; } int batch_size = lod.size() - 1; std::vector offset_new(static_cast(batch_size + 1)); for (int i = 0; i <= batch_size; i++) { offset_new[i] = i; } (output->mutable_lod())->clear(); (output->mutable_lod())->push_back(offset_new); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(sequence_pool, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::SequencePoolCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("MaxIndex", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();