/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "common/log.h" #include "framework/ddim.h" #include "framework/tensor.h" static const std::string g_google = "../models/googlenet"; static const std::string g_mobilenet = "../models/mobilenet"; static const std::string g_mobilenet_ssd = "../models/mobilenet"; static const std::string g_squeezenet = "../models/squeezenet"; static const std::string g_resnet = "../models/image_classification_resnet.inference.model"; static const std::string g_test_image_1x3x224x224 = "../images/test_image_1x3x224x224_float"; template void SetupTensor(paddle_mobile::framework::Tensor *input, paddle_mobile::framework::DDim dims, T lower, T upper) { static unsigned int seed = 100; std::mt19937 rng(seed++); std::uniform_real_distribution uniform_dist(0, 1); T *input_ptr = input->mutable_data(dims); for (int i = 0; i < input->numel(); ++i) { input_ptr[i] = static_cast(uniform_dist(rng) * (upper - lower) + lower); } } template void GetInput(const std::string &input_name, std::vector *input, const std::vector &dims) { int size = 1; for (const auto &dim : dims) { size *= dim; } T *input_ptr = (T *)malloc(sizeof(T) * size); std::ifstream in(input_name, std::ios::in | std::ios::binary); in.read((char *)(input_ptr), size * sizeof(T)); in.close(); for (int i = 0; i < size; ++i) { input->push_back(input_ptr[i]); } free(input_ptr); }