// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/cast_op.h" #include #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { void test_cast_FP16_to_FP32(std::vector shape) { // prepare input&output variables std::string x_var_name = "x"; std::string out_var_name = "out"; Scope scope; auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); x->Resize(DDim(shape)); auto* x_data = x->mutable_data(); // initialize input&output data for (int i = 0; i < x->dims().production(); i++) { x_data[i] = static_cast(i); } // initialize op desc int in_dtype = 4, out_dtype = 5; cpp::OpDesc opdesc; opdesc.SetType("cast"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("in_dtype", in_dtype); opdesc.SetAttr("out_dtype", out_dtype); auto op = CreateOp(opdesc, &scope); Tensor data; data.Resize(DDim(shape)); auto* copy_data = data.mutable_data(); data.CopyDataFrom(*x); x->set_precision(paddle::lite_api::PrecisionType::kFP16); LaunchOp(op, {x_var_name}, {out_var_name}); // compare results auto* out_data = out->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { VLOG(5) << i; EXPECT_NEAR(out_data[i], static_cast(copy_data[i]), 5e-4); } } void test_cast_FP32_to_FP16(std::vector shape) { // prepare input&output variables std::string x_var_name = "x"; std::string out_var_name = "out"; Scope scope; auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); x->Resize(DDim(shape)); auto* x_data = x->mutable_data(); // initialize input&output data for (int i = 0; i < x->dims().production(); i++) { x_data[i] = static_cast(i); } // initialize op desc int in_dtype = 5, out_dtype = 4; cpp::OpDesc opdesc; opdesc.SetType("cast"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("in_dtype", in_dtype); opdesc.SetAttr("out_dtype", out_dtype); auto op = CreateOp(opdesc, &scope); Tensor data; data.Resize(DDim(shape)); auto* copy_data = data.mutable_data(); data.CopyDataFrom(*x); x->set_precision(paddle::lite_api::PrecisionType::kFloat); LaunchOp(op, {x_var_name}, {out_var_name}); // compare results auto* out_data = out->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { VLOG(5) << i; EXPECT_NEAR(static_cast(out_data[i]), copy_data[i], 5e-4); } } TEST(MLUBridges, cast) { test_cast_FP16_to_FP32({2, 3, 4, 5}); test_cast_FP16_to_FP32({6, 3, 2, 5}); test_cast_FP32_to_FP16({2, 3, 4, 5}); test_cast_FP32_to_FP16({6, 3, 2, 5}); } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(cast, kMLU);