// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Get input vars and op attributes auto x_var_name = op_info->Input("X").front(); auto scale_var_name = op_info->Input("Scale").front(); auto bias_var_name = op_info->Input("Bias").front(); auto mean_var_name = op_info->Input("Mean").front(); auto variance_var_name = op_info->Input("Variance").front(); auto y_var_name = op_info->Output("Y").front(); auto epsilon = op_info->GetAttr("epsilon"); auto output = scope->FindVar(y_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto output_tensor = graph->AddNode( y_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); CHECK(graph->HasNode(x_var_name)); auto mean = scope->FindVar(mean_var_name)->GetMutable(); auto mean_dims = mean->dims().Vectorize(); if (mean_dims.size() < 4) { mean_dims.insert(mean_dims.begin(), 4 - mean_dims.size(), 1); } auto mean_tensor = graph->AddNode( mean_var_name, mean_dims, CNML_CONST, CNML_NHWC, graph->FPType()); auto variance = scope->FindVar(variance_var_name)->GetMutable(); auto variance_dims = variance->dims().Vectorize(); if (variance_dims.size() < 4) { variance_dims.insert(variance_dims.begin(), 4 - variance_dims.size(), 1); } auto variance_tensor = graph->AddNode( variance_var_name, variance_dims, CNML_CONST, CNML_NHWC, graph->FPType()); auto scale = scope->FindVar(scale_var_name)->GetMutable(); auto bias = scope->FindVar(bias_var_name)->GetMutable(); int co = static_cast(mean_dims[3]); std::vector variance_trans(co); std::vector mean_trans(co); for (int i = 0; i < co; ++i) { variance_trans[i] = scale->data()[i] / sqrtf(variance->data()[i] + epsilon); mean_trans[i] = mean->data()[i] - bias->data()[i] / variance_trans[i]; } auto input_tensor = graph->GetNode(x_var_name); cnmlBaseOp_t bn_op; CNML_CALL(cnmlCreateBatchNormOpForward(&bn_op, input_tensor->mlu_tensor(), output_tensor->mlu_tensor(), mean_tensor->mlu_tensor(), variance_tensor->mlu_tensor())); graph->BindConstRawData( variance_var_name, variance_trans.data(), variance_trans.size(), true); graph->BindConstRawData( mean_var_name, mean_trans.data(), mean_trans.size(), true); graph->FuseOp(bn_op); CNML_CALL(cnmlDestroyBaseOp(&bn_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(batch_norm, kMLU, paddle::lite::subgraph::mlu::BatchNormConverter);