// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Create act node and set params from op auto fp_type = graph->FPType(); auto x_var_name = op_info->Input("X").front(); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, fp_type); CHECK(graph->HasNode(x_var_name)); auto input_tensor = graph->GetNode(x_var_name); cnmlBaseOp_t activation_op; if (op_type == "leaky_relu") { auto alpha = op_info->GetAttr("alpha"); std::vector shape = {1, 1, 1, 1}; std::string alpha_var_name = string_format("leaky_relu_alpha_%p", op); auto alpha_tensor = graph->AddNode(alpha_var_name, shape, CNML_CONST, CNML_NHWC, fp_type); graph->BindConstRawData(alpha_var_name, &alpha, 1, true); CNML_CALL(cnmlCreatePreluOp(&activation_op, input_tensor->mlu_tensor(), output_tensor->mlu_tensor(), alpha_tensor->mlu_tensor())); } else { cnmlActiveFunction_t act_type = OpTypeToCNMLActType(op_type); CNML_CALL(cnmlCreateActiveOp(&activation_op, act_type, input_tensor->mlu_tensor(), output_tensor->mlu_tensor())); } graph->FuseOp(activation_op); CNML_CALL(cnmlDestroyBaseOp(&activation_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(sigmoid, kMLU, paddle::lite::subgraph::mlu::ActConverter); REGISTER_SUBGRAPH_BRIDGE(relu, kMLU, paddle::lite::subgraph::mlu::ActConverter); REGISTER_SUBGRAPH_BRIDGE(relu6, kMLU, paddle::lite::subgraph::mlu::ActConverter); REGISTER_SUBGRAPH_BRIDGE(tanh, kMLU, paddle::lite::subgraph::mlu::ActConverter); REGISTER_SUBGRAPH_BRIDGE(leaky_relu, kMLU, paddle::lite::subgraph::mlu::ActConverter);