// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/lrn_compute.h" #include #include "lite/backends/arm/math/funcs.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void LrnCompute::Run() { auto& param = Param(); const float* x_data = param.X->data(); float* out_data = param.Out->mutable_data(); auto x_dims = param.X->dims(); CHECK_EQ(x_dims.size(), 4); int num = x_dims[0]; int channel = x_dims[1]; int h = x_dims[2]; int w = x_dims[3]; const int local_size = param.local_size; const float alpha = param.alpha; const float beta = param.beta; const float k = param.k; if (param.norm_region == "AcrossChannels") { lite::arm::math::compute_across_channels( x_data, out_data, num, channel, h, w, local_size, alpha, beta, k); } else { lite::arm::math::compute_within_channels( x_data, out_data, num, channel, h, w, local_size, alpha, beta, k); } } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( lrn, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::LrnCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();