// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/gru_unit_compute.h" #include "lite/api/paddle_place.h" #include "lite/backends/arm/math/funcs.h" #include "lite/backends/arm/math/gru_utils.h" #include "lite/backends/arm/math/sgemm.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { inline lite_api::ActivationType convert_gru_act_type(int act_type) { switch (act_type) { case 0: return lite_api::ActivationType::kIndentity; case 1: return lite_api::ActivationType::kSigmoid; case 2: return lite_api::ActivationType::kTanh; case 3: return lite_api::ActivationType::kRelu; default: return lite_api::ActivationType::kIndentity; } } void GRUUnitCompute::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); // inputs auto input = param.input; auto hidden_prev = param.hidden_prev; auto weight = param.weight; auto bias = param.bias; // outputs auto gate = param.gate; auto reset_hidden_prev = param.reset_hidden_prev; auto hidden = param.hidden; int batch_size = input->dims()[0]; int frame_size = hidden_prev->dims()[1]; const float* input_data = input->data(); const float* hidden_prev_data = hidden_prev->data(); const float* weight_data = weight->data(); float* gate_data = gate->mutable_data(); float* reset_hidden_prev_data = reset_hidden_prev->mutable_data(); float* hidden_data = hidden->mutable_data(); if (bias) { auto bias_data = bias->data(); lite::arm::math::gru_add_with_bias( input_data, bias_data, gate_data, batch_size, frame_size * 3); } else { for (int i = 0; i < batch_size; ++i) { TargetCopy(TargetType::kARM, gate_data + i * frame_size * 3, input_data, frame_size * 3 * sizeof(float)); } } lite::arm::math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); gru_value.prev_out_value = const_cast(hidden_prev_data); gru_value.output_value = hidden_data; gru_value.gate_value = gate_data; gru_value.reset_output_value = reset_hidden_prev_data; lite::arm::math::GRUUnitFunctor::compute( gru_value, frame_size, batch_size, convert_gru_act_type(param.activation), convert_gru_act_type(param.gate_activation), param.origin_mode, &ctx); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(gru_unit, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::GRUUnitCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("HiddenPrev", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Weight", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Gate", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("ResetHiddenPrev", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Hidden", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();