// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/box_clip_compute.h" #include #include #include "lite/backends/arm/math/funcs.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template void ClipTiledBoxes(const Tensor& im_info, const Tensor& input_boxes, Tensor* out) { T* out_data = out->mutable_data(); const T* im_info_data = im_info.data(); const T* input_boxes_data = input_boxes.data(); T zero(0); T im_w = round(im_info_data[1] / im_info_data[2]); T im_h = round(im_info_data[0] / im_info_data[2]); for (int64_t i = 0; i < input_boxes.numel(); ++i) { if (i % 4 == 0) { out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero); } else if (i % 4 == 1) { out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero); } else if (i % 4 == 2) { out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero); } else { out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero); } } } void BoxClipCompute::Run() { auto& param = Param(); const auto* input = param.Input; const auto* im_info = param.ImInfo; auto* output = param.Output; output->mutable_data(); if (input->lod().size() > 1) { LOG(FATAL) << "Only support 0 and 1 level of LoD."; } auto box_lod = input->lod().back(); int64_t n = static_cast(box_lod.size() - 1); for (int i = 0; i < n; ++i) { Tensor im_info_slice = im_info->Slice(i, i + 1); auto* im_info_slice_data = im_info_slice.data(); Tensor box_slice = input->Slice(box_lod[i], box_lod[i + 1]); Tensor output_slice = output->Slice(box_lod[i], box_lod[i + 1]); ClipTiledBoxes(im_info_slice, box_slice, &output_slice); } return; } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(box_clip, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::BoxClipCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("ImInfo", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();