# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import sys, os import numpy as np import paddle.fluid as fluid from paddle.fluid.backward import append_backward a = fluid.layers.data(name="a", shape=[2], dtype='float32') label = fluid.layers.data(name="label", shape=[10], dtype='float32') a1 = fluid.layers.fc(input=a, size=3, act=None, bias_attr=False) cost = fluid.layers.square_error_cost(a1, label) avg_cost = fluid.layers.mean(cost) optimizer = fluid.optimizer.SGD(learning_rate=0.001) optimizer.minimize(cost) cpu = fluid.core.CPUPlace() loss = exe = fluid.Executor(cpu) exe.run(fluid.default_startup_program()) with open('startup_program.pb', 'wb') as f: f.write(fluid.default_startup_program().desc.serialize_to_string()) #data_1 = np.array(numpy.random.random([100, 100]), dtype='float32') #fluid.default_main_program().desc. #prog = fluid.compiler.CompiledProgram(fluid.default_main_program()) prog = fluid.default_main_program() #append_backward(loss) with open('main_program.pb', 'wb') as f: f.write(prog.desc.serialize_to_string()) #outs = exe.run(program=prog, feed={'a':data_1, }, fetch_list=[cost]) #sys.exit(0) fluid.io.save_inference_model("./model2", [a.name], [a1], exe) #print(numpy.array(outs))