// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { void TestModel(const std::vector &valid_places, const Place &preferred_place) { DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_HIGH, FLAGS_threads); lite::Predictor predictor; predictor.Build(FLAGS_model_dir, "", "", preferred_place, valid_places); auto *input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 224, 224}))); auto *data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); for (int i = 0; i < item_size; i++) { data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> results; // i = 1 results.emplace_back(std::vector( {-0.6746618, -0.7119305, -0.053502668, -0.6767762, -0.07488631, -1.1109267, 0.63711894, 0.5979086, -0.20651843, -0.49293622, -0.7404337, -0.25586239, 2.244521, 0.8738271, 0.7193805, -0.21894705, -0.90460795, 0.07160086, 0.54588217, 0.020132724})); auto *out = predictor.GetOutput(0); ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 1000); int step = 50; for (int i = 0; i < results.size(); ++i) { for (int j = 0; j < results[i].size(); ++j) { EXPECT_NEAR(out->data()[j * step + (out->dims()[1] * i)], results[i][j], 2e-4); } } } TEST(EfficientNetB0, test_arm) { std::vector valid_places({ Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}, // Place{TARGET(kOpenCL), PRECISION(kFloat)}, }); TestModel(valid_places, Place({TARGET(kARM), PRECISION(kFloat)})); } TEST(EfficientNetB0, test_opencl) { std::vector valid_places({ Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}, Place{TARGET(kOpenCL), PRECISION(kFloat)}, }); TestModel(valid_places, Place({TARGET(kOpenCL), PRECISION(kFloat)})); } } // namespace lite } // namespace paddle