/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "../test_helper.h" #include "../test_include.h" #include "operators/elementwise_sub_op.h" namespace paddle_mobile { namespace framework { template class TestElementwiseSubOp { public: explicit TestElementwiseSubOp(const Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); // DLOG << " **block size " << blocks.size(); for (int i = 0; i < blocks.size(); ++i) { std::shared_ptr block_desc = blocks[i]; std::vector> ops = block_desc->Ops(); // DLOG << " ops " << ops.size(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op = ops[j]; if (op->Type() == "elementwise_sub" && op->Input("X")[0] == "sigmoid_1.tmp_0") { DLOG << " elementwise_sub attr size: " << op->GetAttrMap().size(); DLOG << " inputs size: " << op->GetInputs().size(); DLOG << " outputs size: " << op->GetOutputs().size(); std::shared_ptr> lrn = std::make_shared>( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); ops_of_block_[*block_desc.get()].push_back(lrn); } } } } std::shared_ptr predict_bn(const Tensor &t1, const Tensor &t2) { // feed auto scope = program_.scope; Variable *x1_feed_value = scope->Var("tmp_0"); auto tensor_x1 = x1_feed_value->GetMutable(); tensor_x1->ShareDataWith(t1); Variable *x2_feed_value = scope->Var("sigmoid_1.tmp_0"); auto tensor_x2 = x2_feed_value->GetMutable(); tensor_x2->ShareDataWith(t2); Variable *output = scope->Var("tmp_1"); auto *output_tensor = output->GetMutable(); output_tensor->mutable_data({1, 1, 6, 6}); // DLOG << typeid(output_tensor).name(); // DLOG << "output_tensor dims: " << output_tensor->dims(); std::shared_ptr out_tensor = std::make_shared(); out_tensor.reset(output_tensor); predict_bn(t1, t2, 0); return out_tensor; } private: const framework::Program program_; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; bool use_optimize_ = false; void predict_bn(const Tensor &t1, const Tensor &t2, int block_id) { std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; DLOG << "op -> run()"; op->Run(); } } }; template class TestElementwiseSubOp; } // namespace framework } // namespace paddle_mobile int main() { DLOG << "----------**********----------"; DLOG << "begin to run ElementwiseSub Test"; paddle_mobile::Loader loader; auto program = loader.Load(std::string(g_ocr) + "/model", std::string(g_ocr) + "/params"); /// input x1 (1,1,6,6) paddle_mobile::framework::Tensor inputx1; SetupTensor(&inputx1, {1, 1, 6, 6}, static_cast(0), static_cast(1)); auto *inputx1_ptr = inputx1.data(); /// input x2 (1,1,6,6) paddle_mobile::framework::Tensor inputx2; SetupTensor(&inputx2, {1, 1, 6, 6}, static_cast(0), static_cast(1)); auto *inputx2_ptr = inputx2.data(); paddle_mobile::framework::TestElementwiseSubOp testElementwiseSubOp(program); auto output_op = testElementwiseSubOp.predict_bn(inputx1, inputx2); auto *output_op_ptr = output_op->data(); auto inputx1_dim = inputx1.numel() / inputx1.dims()[0]; DLOG << " input1 : "; for (int i = 0; i < inputx1.dims()[0]; ++i) { for (int j = 0; j < inputx1_dim; ++j) { DLOGF("%f ", inputx1_ptr[i * inputx1_dim + j]); } DLOGF("\n"); } auto inputx2_dim = inputx2.numel() / inputx2.dims()[0]; DLOG << " input2 : "; for (int i = 0; i < inputx2.dims()[0]; ++i) { for (int j = 0; j < inputx2_dim; ++j) { DLOGF("%f ", inputx2_ptr[i * inputx2_dim + j]); } DLOGF("\n"); } auto output_dim = output_op->numel() / output_op->dims()[0]; DLOG << " output : "; for (int i = 0; i < output_op->dims()[0]; ++i) { for (int j = 0; j < output_dim; ++j) { DLOGF("%f ", output_op_ptr[i * output_dim + j]); } DLOGF("\n"); } return 0; }