// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/conditional_block_compute.h" #include #include #include #include "lite/backends/arm/math/funcs.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void ConditionalBlockCompute::PrepareForRun() { auto& param = Param(); auto cur_scope = param.scope; executor_ = std::make_shared(param.sub_block, cur_scope, place()); } void ConditionalBlockCompute::Run() { auto& param = Param(); for (auto& out : param.outs) { out->clear(); } bool need_run = true; if (param.is_scalar_condition) { auto* cond = param.cond; auto* cond_data = cond->data(); need_run = cond_data[0]; } else { auto x = param.x; for (auto pt : x) { if (pt == nullptr || !pt->IsInitialized() || pt->dims().empty()) { need_run = false; break; } } } if (need_run) { executor_->Run(); } } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(conditional_block, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ConditionalBlockCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Cond", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kBool))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Scope", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();