// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifdef LITE_WITH_FPGA #include "lite/backends/fpga/lite_tensor.h" #endif #ifndef LITE_WITH_FPGA #include #include // for multiplies #include #include #include #include #include "lite/core/memory.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { class DDimLite; class TensorLite; using DDim = lite::DDimLite; using Tensor = lite::TensorLite; class DDimLite { public: using value_type = int64_t; DDimLite() = default; explicit DDimLite(const std::vector &x) { ConstructFrom(x); } // DDimLite(std::initializer_list init_list) : // DDimLite(std::vector(init_list)) {} void ConstructFrom(const std::vector &x) { data_ = x; } value_type operator[](int offset) const { return data_[offset]; } value_type &operator[](int offset) { return data_[offset]; } std::vector Vectorize() const { return data_; } size_t size() const { return data_.size(); } bool empty() const { return data_.empty(); } value_type production() const; const std::vector &data() const { return data_; } value_type count(int start, int end) const; DDimLite Slice(int start, int end) const; DDimLite Flatten2D(int col) const { return DDimLite(std::vector( {Slice(0, col).production(), Slice(col, size()).production()})); } std::string repr() const; friend STL::ostream &operator<<(STL::ostream &os, const DDimLite &dims) { os << dims.repr(); return os; } friend bool operator==(const DDimLite &a, const DDimLite &b) { if (a.size() != b.size()) return false; for (size_t i = 0; i < a.size(); i++) { if (a[i] != b[i]) return false; } return true; } friend bool operator!=(const DDimLite &a, const DDimLite &b) { return !(a == b); } private: std::vector data_; }; using LoD = std::vector>; // A light-weight tensor implementation. class TensorLite { public: TensorLite() : buffer_(std::make_shared()) {} template void Assign(DType *data, const DimT &dim) { Resize(dim); auto *dst = mutable_data(Target); CopySync( dst, data, dim.production() * sizeof(DType), IoDirection::HtoD); } // T is the data type and R is the return type // For OpenCL, the return type can be cl::Buffer // and the data type can be float/int8_t. // For other devices, T and R may be the same type. template const R *data() const { return reinterpret_cast(static_cast(buffer_->data()) + offset_); } void Resize(const DDimLite &ddim) { dims_ = ddim; } void Resize(const std::vector &x) { dims_ = DDimLite(x); } const DDimLite &dims() const { return dims_; } int64_t numel() const { return dims_.production(); } const LoD &lod() const { return lod_; } LoD *mutable_lod() { return &lod_; } void set_lod(const LoD &lod) { lod_ = lod; } PrecisionType precision() const { return precision_; } void set_precision(PrecisionType precision) { precision_ = precision; } bool persistable() const { return persistable_; } void set_persistable(bool persistable) { persistable_ = persistable; } // T is the data type and R is the return type // For OpenCL, the return type can be cl::Buffer // and the data type can be float/int8_t. // For other devices, T and R may be the same type. template R *mutable_data() { memory_size_ = dims_.production() * sizeof(T); buffer_->ResetLazy(target_, memory_size_); return reinterpret_cast(static_cast(buffer_->data()) + offset_); } #ifdef LITE_WITH_OPENCL template R *mutable_data(const size_t img_w, const size_t img_h, void *host_ptr = nullptr) { target_ = TARGET(kOpenCL); buffer_->ResetLazyImage2D(target_, img_w, img_h, host_ptr); return static_cast(buffer_->data()); } #endif // T is the data type and R is the return type // For OpenCL, the return type can be cl::Buffer // and the data type can be float/int8_t. // For other devices, T and R may be the same type. template R *mutable_data(TargetType target) { target_ = target; memory_size_ = dims_.production() * sizeof(T); buffer_->ResetLazy(target, memory_size()); return reinterpret_cast(static_cast(buffer_->data()) + offset_); } void *mutable_data(size_t memory_size); void *mutable_data(TargetType target, size_t memory_size); const void *raw_data() const { return static_cast( (static_cast(buffer_->data()) + offset_)); } void clear() { buffer_->Free(); offset_ = 0; } size_t data_size() const { return this->dims().production(); } size_t memory_size() const { return memory_size_; } size_t offset() const { return offset_; } bool IsInitialized() const { return buffer_->data(); } // Other share data to this. void ShareDataWith(const TensorLite &other); void CopyDataFrom(const TensorLite &other); TargetType target() const { return target_; } template TensorLite Slice(int64_t begin, int64_t end) const; friend STL::ostream &operator<<(STL::ostream &os, const TensorLite &tensor) { os << "Tensor:" << '\n'; os << "dim: " << tensor.dims() << '\n'; for (int i = 0; i < tensor.dims().production(); i++) { os << tensor.template data()[i] << " "; } os << "\n"; return os; } private: TargetType target_{TargetType::kHost}; // precision_ and persistable_ are only used for persistable vars. // If your tensor wants to be saved and loaded correctly, you must // set values of precision_ and persistable_ after updating it. // If your tensor is just a temp tensor, such as activations, // you can ignore these two attributes. PrecisionType precision_{PrecisionType::kUnk}; bool persistable_{false}; DDimLite dims_; std::shared_ptr buffer_; LoD lod_; size_t memory_size_{}; /// @brief Buffer may be shared with other tensors size_t offset_{0}; }; template TensorLite TensorLite::Slice(int64_t begin, int64_t end) const { CHECK_GE(begin, 0); CHECK_LE(end, dims_[0]); CHECK_LT(begin, end); if (dims_[0] == 1) { return *this; } else { int64_t base = numel() / dims_[0]; TensorLite dst; dst.buffer_ = buffer_; dst.target_ = target_; auto dst_dims = dims_; dst_dims[0] = end - begin; dst.Resize(dst_dims); dst.offset_ = offset_ + static_cast(begin * base) * sizeof(T); return dst; } } template bool TensorCompareWith(const TensorT &a, const TensorT &b) { if (a.dims() != b.dims()) return false; if (memcmp(a.raw_data(), b.raw_data(), a.data_size()) != 0) return false; return true; } #ifdef LITE_WITH_OPENCL template <> const cl::Image2D *TensorLite::data() const; template <> // use int16_t represent half float const cl::Image2D *TensorLite::data() const; #endif } // namespace lite } // namespace paddle #endif // #ifndef LITE_WITH_FPGA