// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/apu/bridges/graph.h" #include "lite/kernels/apu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace apu { int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto model = graph->model(); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[APU] Converting [" + op_type + "]"; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); CHECK_GE(x_dims.size(), 2UL); auto x_rank = x_dims.size(); auto out_name = op_info->Output("Out").front(); // Check output shape auto axis = op_info->GetAttr("axis"); if (axis < 0) { axis += x_rank; } float input_scale = 1.0f; float out_scale = 1.0f; if (op_info->HasAttr("enable_int8")) { if (op_info->GetAttr("enable_int8")) { auto x_name = op_info->Input("X").front(); auto out_name = op_info->Output("Out").front(); if (op_info->HasInputScale(x_name)) input_scale = op_info->GetInputScale(x_name)[0]; if (op_info->HasOutputScale(out_name)) out_scale = op_info->GetOutputScale(out_name)[0]; } else { LOG(WARNING) << "Do not enable_int8"; return FAILED; } } else { LOG(WARNING) << "Do not enable_int8"; return FAILED; } // Check output scale NeuronOperandType xType; xType.type = NEURON_TENSOR_QUANT8_ASYMM; xType.scale = input_scale; xType.zeroPoint = 128; xType.dimensionCount = x_dims.size(); std::vector dims_x; for (int i = 0; i < x_dims.size(); i++) dims_x.push_back(x_dims[i]); xType.dimensions = &dims_x[0]; std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { // input operand already exist x_node = graph->Get(x_name); VLOG(3) << "Graph has " << x_name << ",index: " << x_node->index(); } else { // add input operand NeuronModel_addOperand(model, &xType); // 0: input x_node = graph->Add(x_name, dims_x); } VLOG(3) << "input_scale size: " << input_scale << " ,x_dims size: " << x_dims.size() << " ,x_dims: " << x_dims; // Add beta operand std::vector dims_int32 = {0}; NeuronOperandType betaType; betaType.type = NEURON_FLOAT32; betaType.dimensionCount = 0; NeuronModel_addOperand(model, &betaType); // 1: beta std::shared_ptr beta_node = nullptr; beta_node = graph->Add(x_name + "_beta", dims_int32); // Add axis operand NeuronOperandType axisType; axisType.type = NEURON_INT32; axisType.dimensionCount = 0; NeuronModel_addOperand(model, &axisType); // 2: axis std::shared_ptr axis_node = nullptr; axis_node = graph->Add(x_name + "_axis", dims_int32); // Add out operand NeuronOperandType outType; outType.type = NEURON_TENSOR_QUANT8_ASYMM; outType.scale = out_scale / 127; outType.zeroPoint = 128; outType.dimensionCount = x_dims.size(); outType.dimensions = &dims_x[0]; NeuronModel_addOperand(model, &outType); // 3: output std::shared_ptr out_node = nullptr; out_node = graph->Add(out_name, dims_x); VLOG(3) << "output_scale: " << out_scale; float beta_val[] = {1.0f}; NeuronModel_setOperandValue( model, beta_node->index(), beta_val, sizeof(float) * 1); int32_t axis_val[1]; axis_val[0] = axis; NeuronModel_setOperandValue( model, axis_node->index(), axis_val, sizeof(int32_t) * 1); std::vector addInIndex = { x_node->index(), beta_node->index(), axis_node->index()}; std::vector addOutIndex = {out_node->index()}; int neuron_errCode = NeuronModel_addOperation(model, NEURON_SOFTMAX, addInIndex.size(), &addInIndex[0], addOutIndex.size(), &addOutIndex[0]); if (NEURON_NO_ERROR != neuron_errCode) { LOG(WARNING) << "Add op fail:" << op_type; return FAILED; } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace apu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(softmax, kAPU, paddle::lite::subgraph::apu::SoftmaxConverter);